No Arabic abstract
We propose a novel formulation for phase synchronization -- the statistical problem of jointly estimating alignment angles from noisy pairwise comparisons -- as a nonconvex optimization problem that enforces consistency among the pairwise comparisons in multiple frequency channels. Inspired by harmonic retrieval in signal processing, we develop a simple yet efficient two-stage algorithm that leverages the multi-frequency information. We demonstrate in theory and practice that the proposed algorithm significantly outperforms state-of-the-art phase synchronization algorithms, at a mild computational costs incurred by using the extra frequency channels. We also extend our algorithmic framework to general synchronization problems over compact Lie groups.
We present many new results related to reliable (interactive) communication over insertion-deletion channels. Synchronization errors, such as insertions and deletions, strictly generalize the usual symbol corruption errors and are much harder to protect against. We show how to hide the complications of synchronization errors in many applications by introducing very general channel simulations which efficiently transform an insertion-deletion channel into a regular symbol corruption channel with an error rate larger by a constant factor and a slightly smaller alphabet. We generalize synchronization string based methods which were recently introduced as a tool to design essentially optimal error correcting codes for insertion-deletion channels. Our channel simulations depend on the fact that, at the cost of increasing the error rate by a constant factor, synchronization strings can be decoded in a streaming manner that preserves linearity of time. We also provide a lower bound showing that this constant factor cannot be improved to $1+epsilon$, in contrast to what is achievable for error correcting codes. Our channel simulations drastically generalize the applicability of synchronization strings. We provide new interactive coding schemes which simulate any interactive two-party protocol over an insertion-deletion channel. Our results improve over the interactive coding schemes of Braverman et al. [TransInf 2017] and Sherstov and Wu [FOCS 2017], which achieve a small constant rate and require exponential time computations, with respect to computational and communication complexities. We provide the first computationally efficient interactive coding schemes for synchronization errors, the first coding scheme with a rate approaching one for small noise rates, and also the first coding scheme that works over arbitrarily small alphabet sizes.
We consider the problem of decoding a discrete signal of categorical variables from the observation of several histograms of pooled subsets of it. We present an Approximate Message Passing (AMP) algorithm for recovering the signal in the random dense setting where each observed histogram involves a random subset of entries of size proportional to n. We characterize the performance of the algorithm in the asymptotic regime where the number of observations $m$ tends to infinity proportionally to n, by deriving the corresponding State Evolution (SE) equations and studying their dynamics. We initiate the analysis of the multi-dimensional SE dynamics by proving their convergence to a fixed point, along with some further properties of the iterates. The analysis reveals sharp phase transition phenomena where the behavior of AMP changes from exact recovery to weak correlation with the signal as m/n crosses a threshold. We derive formulae for the threshold in some special cases and show that they accurately match experimental behavior.
This paper addresses compressive sensing for multi-channel ECG. Compared to the traditional sparse signal recovery approach which decomposes the signal into the product of a dictionary and a sparse vector, the recently developed cosparse approach exploits sparsity of the product of an analysis matrix and the original signal. We apply the cosparse Greedy Analysis Pursuit (GAP) algorithm for compressive sensing of ECG signals. Moreover, to reduce processing time, classical signal-channel GAP is generalized to the multi-channel GAP algorithm, which simultaneously reconstructs multiple signals with similar support. Numerical experiments show that the proposed method outperforms the classical sparse multi-channel greedy algorithms in terms of accuracy and the single-channel cosparse approach in terms of processing speed.
We consider the problem of clustering a graph $G$ into two communities by observing a subset of the vertex correlations. Specifically, we consider the inverse problem with observed variables $Y=B_G x oplus Z$, where $B_G$ is the incidence matrix of a graph $G$, $x$ is the vector of unknown vertex variables (with a uniform prior) and $Z$ is a noise vector with Bernoulli$(varepsilon)$ i.i.d. entries. All variables and operations are Boolean. This model is motivated by coding, synchronization, and community detection problems. In particular, it corresponds to a stochastic block model or a correlation clustering problem with two communities and censored edges. Without noise, exact recovery (up to global flip) of $x$ is possible if and only the graph $G$ is connected, with a sharp threshold at the edge probability $log(n)/n$ for ErdH{o}s-Renyi random graphs. The first goal of this paper is to determine how the edge probability $p$ needs to scale to allow exact recovery in the presence of noise. Defining the degree (oversampling) rate of the graph by $alpha =np/log(n)$, it is shown that exact recovery is possible if and only if $alpha >2/(1-2varepsilon)^2+ o(1/(1-2varepsilon)^2)$. In other words, $2/(1-2varepsilon)^2$ is the information theoretic threshold for exact recovery at low-SNR. In addition, an efficient recovery algorithm based on semidefinite programming is proposed and shown to succeed in the threshold regime up to twice the optimal rate. For a deterministic graph $G$, defining the degree rate as $alpha=d/log(n)$, where $d$ is the minimum degree of the graph, it is shown that the proposed method achieves the rate $alpha> 4((1+lambda)/(1-lambda)^2)/(1-2varepsilon)^2+ o(1/(1-2varepsilon)^2)$, where $1-lambda$ is the spectral gap of the graph $G$.
This paper focuses on the combined radar and communications problem and conducts a thorough analytical investigation on the effect of phase and frequency change on the communication and sensing functionality. First, we consider the classical stepped frequency radar waveform and modulate data using M-ary phase shift keying (MPSK). Two important analytical tools in radar waveform design, namely the ambiguity function (AF) and the Fisher information matrix (FIM) are derived, based on which, we make the important conclusion that MPSK modulation has a negligible effect on radar local accuracy. Next, we extend the analysis to incorporate frequency permutations and propose a new signalling scheme in which the mapping between incoming data and waveforms is performed based on an efficient combinatorial transform called the Lehmer code. We also provide an efficient communications receiver based on the Hungarian algorithm. From the communications perspective, we consider the optimal maximum likelihood (ML) detector and derive the union bound and nearest neighbour approximation on the block error probability. From the radar sensing perspective, we discuss the broader structure of the waveform based on the AF derivation and quantify the radar local accuracy based on the FIM.