Do you want to publish a course? Click here

Decoding from Pooled Data: Phase Transitions of Message Passing

92   0   0.0 ( 0 )
 Added by Ahmed El Alaoui
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We consider the problem of decoding a discrete signal of categorical variables from the observation of several histograms of pooled subsets of it. We present an Approximate Message Passing (AMP) algorithm for recovering the signal in the random dense setting where each observed histogram involves a random subset of entries of size proportional to n. We characterize the performance of the algorithm in the asymptotic regime where the number of observations $m$ tends to infinity proportionally to n, by deriving the corresponding State Evolution (SE) equations and studying their dynamics. We initiate the analysis of the multi-dimensional SE dynamics by proving their convergence to a fixed point, along with some further properties of the iterates. The analysis reveals sharp phase transition phenomena where the behavior of AMP changes from exact recovery to weak correlation with the signal as m/n crosses a threshold. We derive formulae for the threshold in some special cases and show that they accurately match experimental behavior.



rate research

Read More

We propose a novel binary message passing decoding algorithm for product-like codes based on bounded distance decoding (BDD) of the component codes. The algorithm, dubbed iterative BDD with scaled reliability (iBDD-SR), exploits the channel reliabilities and is therefore soft in nature. However, the messages exchanged by the component decoders are binary (hard) messages, which significantly reduces the decoder data flow. The exchanged binary messages are obtained by combining the channel reliability with the BDD decoder output reliabilities, properly conveyed by a scaling factor applied to the BDD decisions. We perform a density evolution analysis for generalized low-density parity-check (GLDPC) code ensembles and spatially coupled GLDPC code ensembles, from which the scaling factors of the iBDD-SR for product and staircase codes, respectively, can be obtained. For the white additive Gaussian noise channel, we show performance gains up to $0.29$ dB and $0.31$ dB for product and staircase codes compared to conventional iterative BDD (iBDD) with the same decoder data flow. Furthermore, we show that iBDD-SR approaches the performance of ideal iBDD that prevents miscorrections.
Consider a population consisting of n individuals, each of whom has one of d types (e.g. their blood type, in which case d=4). We are allowed to query this database by specifying a subset of the population, and in response we observe a noiseless histogram (a d-dimensional vector of counts) of types of the pooled individuals. This measurement model arises in practical situations such as pooling of genetic data and may also be motivated by privacy considerations. We are interested in the number of queries one needs to unambiguously determine the type of each individual. In this paper, we study this information-theoretic question under the random, dense setting where in each query, a random subset of individuals of size proportional to n is chosen. This makes the problem a particular example of a random constraint satisfaction problem (CSP) with a planted solution. We establish almost matching upper and lower bounds on the minimum number of queries m such that there is no solution other than the planted one with probability tending to 1 as n tends to infinity. Our proof relies on the computation of the exact annealed free energy of this model in the thermodynamic limit, which corresponds to the exponential rate of decay of the expected number of solution to this planted CSP. As a by-product of the analysis, we show an identity of independent interest relating the Gaussian integral over the space of Eulerian flows of a graph to its spanning tree polynomial.
We consider a class of nonlinear mappings $mathsf{F}_{A,N}$ in $mathbb{R}^N$ indexed by symmetric random matrices $Ainmathbb{R}^{Ntimes N}$ with independent entries. Within spin glass theory, special cases of these mappings correspond to iterating the TAP equations and were studied by Bolthausen [Comm. Math. Phys. 325 (2014) 333-366]. Within information theory, they are known as approximate message passing algorithms. We study the high-dimensional (large $N$) behavior of the iterates of $mathsf{F}$ for polynomial functions $mathsf{F}$, and prove that it is universal; that is, it depends only on the first two moments of the entries of $A$, under a sub-Gaussian tail condition. As an application, we prove the universality of a certain phase transition arising in polytope geometry and compressed sensing. This solves, for a broad class of random projections, a conjecture by David Donoho and Jared Tanner.
We propose a binary message passing decoding algorithm for product codes based on generalized minimum distance decoding (GMDD) of the component codes, where the last stage of the GMDD makes a decision based on the Hamming distance metric. The proposed algorithm closes half of the gap between conventional iterative bounded distance decoding (iBDD) and turbo product decoding based on the Chase--Pyndiah algorithm, at the expense of some increase in complexity. Furthermore, the proposed algorithm entails only a limited increase in data flow compared to iBDD.
We propose a novel soft-aided iterative decoding algorithm for product codes (PCs). The proposed algorithm, named iterative bounded distance decoding with combined reliability (iBDD-CR), enhances the conventional iterative bounded distance decoding (iBDD) of PCs by exploiting some level of soft information. In particular, iBDD-CR can be seen as a modification of iBDD where the hard decisions of the row and column decoders are made based on a reliability estimate of the BDD outputs. The reliability estimates are derived using extrinsic message passing for generalized low-density-parity check (GLDPC) ensembles, which encompass PCs. We perform a density evolution analysis of iBDD-CR for transmission over the additive white Gaussian noise channel for the GLDPC ensemble. We consider both binary transmission and bit-interleaved coded modulation with quadrature amplitude modulation.We show that iBDD-CR achieves performance gains up to $0.51$ dB compared to iBDD with the same internal decoder data flow. This makes the algorithm an attractive solution for very high-throughput applications such as fiber-optic communications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا