Do you want to publish a course? Click here

Cloud Service Provider Evaluation System using Fuzzy Rough Set Technique

189   0   0.0 ( 0 )
 Added by Parwat Singh Anjana
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Cloud Service Providers (CSPs) offer a wide variety of scalable, flexible, and cost-efficient services to cloud users on demand and pay-per-utilization basis. However, vast diversity in available cloud service providers leads to numerous challenges for users to determine and select the best suitable service. Also, sometimes users need to hire the required services from multiple CSPs which introduce difficulties in managing interfaces, accounts, security, supports, and Service Level Agreements (SLAs). To circumvent such problems having a Cloud Service Broker (CSB) be aware of service offerings and users Quality of Service (QoS) requirements will benefit both the CSPs as well as users. In this work, we proposed a Fuzzy Rough Set based Cloud Service Brokerage Architecture, which is responsible for ranking and selecting services based on users QoS requirements, and finally monitor the service execution. We have used the fuzzy rough set technique for dimension reduction. Used weighted Euclidean distance to rank the CSPs. To prioritize user QoS request, we intended to use user assign weights, also incorporated system assigned weights to give the relative importance to QoS attributes. We compared the proposed ranking technique with an existing method based on the system response time. The case study experiment results show that the proposed approach is scalable, resilience, and produce better results with less searching time.



rate research

Read More

The global economic recession and the shrinking budget of IT projects have led to the need of development of integrated information systems at a lower cost. Today, the emerging phenomenon of cloud computing aims at transforming the traditional way of computing by providing both software applications and hardware resources as a service. With the rapid evolution of Information Communication Technology (ICT) governments, organizations and businesses are looking for solutions to improve their services and integrate their IT infrastructures. In recent years advanced technologies such as SOA and Cloud computing have been evolved to address integration problems. The Clouds enormous capacity with comparable low cost makes it an ideal platform for SOA deployment. This paper deals with the combined approach of Cloud and Service Oriented Architecture along with a Case Study and a review.
Bolted is a new architecture for a bare metal cloud with the goal of providing security-sensitive customers of a cloud the same level of security and control that they can obtain in their own private data centers. It allows tenants to elastically allocate secure resources within a cloud while being protected from other previous, current, and future tenants of the cloud. The provisioning of a new server to a tenant isolates a bare metal server, only allowing it to communicate with other tenants servers once its critical firmware and software have been attested to the tenant. Tenants, rather than the provider, control the tradeoffs between security, price, and performance. A prototype demonstrates scalable end-to-end security with small overhead compared to a less secure alternative.
The Cloud infrastructure offers to end users a broad set of heterogenous computational resources using the pay-as-you-go model. These virtualized resources can be provisioned using different pricing models like the unreliable model where resources are provided at a fraction of the cost but with no guarantee for an uninterrupted processing. However, the enormous gamut of opportunities comes with a great caveat as resource management and scheduling decisions are increasingly complicated. Moreover, the presented uncertainty in optimally selecting resources has also a negatively impact on the quality of solutions delivered by scheduling algorithms. In this paper, we present a dynamic scheduling algorithm (i.e., the Uncertainty-Driven Scheduling - UDS algorithm) for the management of scientific workflows in Cloud. Our model minimizes both the makespan and the monetary cost by dynamically selecting reliable or unreliable virtualized resources. For covering the uncertainty in decision making, we adopt a Fuzzy Logic Controller (FLC) to derive the pricing model of the resources that will host every task. We evaluate the performance of the proposed algorithm using real workflow applications being tested under the assumption of different probabilities regarding the revocation of unreliable resources. Numerical results depict the performance of the proposed approach and a comparative assessment reveals the position of the paper in the relevant literature.
In this paper we prove that Neutrosophic Set (NS) is an extension of Intuitionistic Fuzzy Set (IFS) no matter if the sum of single-valued neutrosophic components is < 1, or > 1, or = 1. For the case when the sum of components is 1 (as in IFS), after applying the neutrosophic aggregation operators one gets a different result from that of applying the intuitionistic fuzzy operators, since the intuitionistic fuzzy operators ignore the indeterminacy, while the neutrosophic aggregation operators take into consideration the indeterminacy at the same level as truth-membership and falsehood-nonmembership are taken. NS is also more flexible and effective because it handles, besides independent components, also partially independent and partially dependent components, while IFS cannot deal with these. Since there are many types of indeterminacies in our world, we can construct different approaches to various neutrosophic concepts. Also, Regret Theory, Grey System Theory, and Three-Ways Decision are particular cases of Neutrosophication and of Neutrosophic Probability. We extended for the first time the Three-Ways Decision to n-Ways Decision, and the Spherical Fuzzy Set to n-HyperSpherical Fuzzy Set and to n-HyperSpherical Neutrosophic Set.
This paper presents results of the ongoing development of the Cloud Services Delivery Infrastructure (CSDI) that provides a basis for infrastructure centric cloud services provisioning, operation and management in multi-cloud multi-provider environment defined as a Zero Touch Provisioning, Operation and Management (ZTP/ZTPOM) model. The presented work refers to use cases from data intensive research that require high performance computation resources and large storage volumes that are typically distributed between datacenters often involving multiple cloud providers. Automation for large scale scientific (and industrial) applications should include provisioning of both inter-cloud network infrastructure and intra-cloud application resources. It should provide support for the complete application operation workflow together with the possible application infrastructure and resources changes that can occur during the application lifecycle. The authors investigate existing technologies for automation of the service provisioning and management processes aiming to cross-pollinate best practices from currently disconnected domains such as cloud based applications provisioning and multi-domain high-performance network provisioning. The paper refers to the previous and legacy research by authors, the Open Cloud eXchange (OCX), that has been proposed to address the last mile problem in cloud services delivery to campuses over trans-national backbone networks such as GEANT. OCX will serve as an integral component of the prospective ZTP infrastructure over the GEANT network. Another important component, the Marketplace, is defined for providing cloud services and applications discovery (in generally intercloud environment) and may also support additional services such as services composition and trust brokering for establishing customer-provider federations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا