Do you want to publish a course? Click here

A Secure Cloud with Minimal Provider Trust

168   0   0.0 ( 0 )
 Added by Amin Mosayyebzadeh
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Bolted is a new architecture for a bare metal cloud with the goal of providing security-sensitive customers of a cloud the same level of security and control that they can obtain in their own private data centers. It allows tenants to elastically allocate secure resources within a cloud while being protected from other previous, current, and future tenants of the cloud. The provisioning of a new server to a tenant isolates a bare metal server, only allowing it to communicate with other tenants servers once its critical firmware and software have been attested to the tenant. Tenants, rather than the provider, control the tradeoffs between security, price, and performance. A prototype demonstrates scalable end-to-end security with small overhead compared to a less secure alternative.



rate research

Read More

We propose and experimentally evaluate a novel secure aggregation algorithm targeted at cross-organizational federated learning applications with a fixed set of participating learners. Our solution organizes learners in a chain and encrypts all traffic to reduce the controller of the aggregation to a mere message broker. We show that our algorithm scales better and is less resource demanding than existing solutions, while being easy to implement on constrained platforms. With 36 nodes our method outperforms state-of-the-art secure aggregation by 70x, and 56x with and without failover, respectively.
Cloud Service Providers (CSPs) offer a wide variety of scalable, flexible, and cost-efficient services to cloud users on demand and pay-per-utilization basis. However, vast diversity in available cloud service providers leads to numerous challenges for users to determine and select the best suitable service. Also, sometimes users need to hire the required services from multiple CSPs which introduce difficulties in managing interfaces, accounts, security, supports, and Service Level Agreements (SLAs). To circumvent such problems having a Cloud Service Broker (CSB) be aware of service offerings and users Quality of Service (QoS) requirements will benefit both the CSPs as well as users. In this work, we proposed a Fuzzy Rough Set based Cloud Service Brokerage Architecture, which is responsible for ranking and selecting services based on users QoS requirements, and finally monitor the service execution. We have used the fuzzy rough set technique for dimension reduction. Used weighted Euclidean distance to rank the CSPs. To prioritize user QoS request, we intended to use user assign weights, also incorporated system assigned weights to give the relative importance to QoS attributes. We compared the proposed ranking technique with an existing method based on the system response time. The case study experiment results show that the proposed approach is scalable, resilience, and produce better results with less searching time.
Decentralized methods are gaining popularity for data-driven models in power systems as they offer significant computational scalability while guaranteeing full data ownership by utility stakeholders. However, decentralized methods still require sharing information about network flow estimates over public facing communication channels, which raises privacy concerns. In this paper we propose a differential privacy driven approach geared towards decentralized formulations of mixed integer operations and maintenance optimization problems that protects network flow estimates. We prove strong privacy guarantees by leveraging the linear relationship between the phase angles and the flow. To address the challenges associated with the mixed integer and dynamic nature of the problem, we introduce an exponential moving average based consensus mechanism to enhance convergence, coupled with a control chart based convergence criteria to improve stability. Our experimental results obtained on the IEEE 118 bus case demonstrate that our privacy preserving approach yields solution qualities on par with benchmark methods without differential privacy. To demonstrate the computational robustness of our method, we conduct experiments using a wide range of noise levels and operational scenarios.
This paper presents results of the ongoing development of the Cloud Services Delivery Infrastructure (CSDI) that provides a basis for infrastructure centric cloud services provisioning, operation and management in multi-cloud multi-provider environment defined as a Zero Touch Provisioning, Operation and Management (ZTP/ZTPOM) model. The presented work refers to use cases from data intensive research that require high performance computation resources and large storage volumes that are typically distributed between datacenters often involving multiple cloud providers. Automation for large scale scientific (and industrial) applications should include provisioning of both inter-cloud network infrastructure and intra-cloud application resources. It should provide support for the complete application operation workflow together with the possible application infrastructure and resources changes that can occur during the application lifecycle. The authors investigate existing technologies for automation of the service provisioning and management processes aiming to cross-pollinate best practices from currently disconnected domains such as cloud based applications provisioning and multi-domain high-performance network provisioning. The paper refers to the previous and legacy research by authors, the Open Cloud eXchange (OCX), that has been proposed to address the last mile problem in cloud services delivery to campuses over trans-national backbone networks such as GEANT. OCX will serve as an integral component of the prospective ZTP infrastructure over the GEANT network. Another important component, the Marketplace, is defined for providing cloud services and applications discovery (in generally intercloud environment) and may also support additional services such as services composition and trust brokering for establishing customer-provider federations.
Federated clouds raise a variety of challenges for managing identity, resource access, naming, connectivity, and object access control. This paper shows how to address these challenges in a comprehensive and uniform way using a data-centric approach. The foundation of our approach is a trust logic in which participants issue authenticated statements about principals, objects, attributes, and relationships in a logic language, with reasoning based on declarative policy rules. We show how to use the logic to implement a trust infrastructure for cloud federation that extends the model of NSF GENI, a federated IaaS testbed. It captures shared identity management, GENI authority services, cross-site interconnection using L2 circuits, and a naming and access control system similar to AWS Identity and Access Management (IAM), but extended to a federated system without central control.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا