No Arabic abstract
We report on a systematic geometric procedure, built up on solutions designed in the absence of dissipation, to mitigate the effects of dissipation in the control of open quantum systems. Our method addresses a standard class of open quantum systems modeled by non-Hermitian Hamiltonians. It provides the analytical expression of the extra magnetic field to be superimposed to the driving field in order to compensate the geometric distortion induced by dissipation, and produces an exact geometric optimization of fast population transfer. Interestingly, it also preserves the robustness properties of protocols originally optimized against noise. Its extension to two interacting spins restores a fidelity close to unity for the fast generation of Bell state in the presence of dissipation.
The purpose of this paper is to extend J.C. Willems theory of dissipative systems to the quantum domain. This general theory, which combines perspectives from the quantum physics and control engineering communities, provides useful methods for analysis and design of dissipative quantum systems. We describe the interaction of the plant and a class of exosystems in general quantum feedback network terms. Our results include an infinitesimal characterization of the dissipation property, which generalizes the well-known Positive Real and Bounded Real Lemmas, and is used to study some properties of quantum dissipative systems. We also show how to formulate control design problems using quantum network models, which implements Willems `control by interconnection for open quantum systems. This control design formulation includes, for example, standard problems of stabilization, regulation, and robust control.
Cooling down a trapped ion into its motional ground state is a central step for trapped ions based quantum information processing. State of the art cooling schemes often work under a set of optimal cooling conditions derived analytically using a perturbative approach, in which the sideband coupling is assumed to be the weakest of all the relevant transitions. As a result the cooling rate is severely limited. Here we propose to use quantum control technique powered with automatic differentiation to speed up the classical cooling schemes. We demonstrate the efficacy of our approach by applying it to find the optimal cooling conditions for classical sideband cooling and electromagnetically induced transparency cooling schemes, which are in general beyond the weak sideband coupling regime. Based on those numerically found optimal cooling conditions, we show that faster cooling can be achieved while at the same time a low average phonon occupation can be retained.
Describing current in open quantum systems can be problematic due to the subtle interplay of quantum coherence and environmental noise. Probing the noise-induced current can be detrimental to the tunneling-induced current and vice versa. We derive a general theory for the probability current in quantum systems arbitrarily interacting with their environment that overcomes this difficulty. We show that the current can be experimentally measured by performing a sequence of weak and standard quantum measurements. We exemplify our theory by analyzing a simple Smoluchowski-Feynman-type ratchet consisting of two particles, operating deep in the quantum regime. Fully incorporating both thermal and quantum effects, the current generated in the model can be used to detect the onset of genuine quantumness in the form of quantum contextuality. The model can also be used to generate steady-state entanglement in the presence of arbitrarily hot environment.
Manipulate and control of the complex quantum system with high precision are essential for achieving universal fault tolerant quantum computing. For a physical system with restricted control resources, it is a challenge to control the dynamics of the target system efficiently and precisely under disturbances. Here we propose a multi-level dissipative quantum control framework and show that deep reinforcement learning provides an efficient way to identify the optimal strategies with restricted control parameters of the complex quantum system. This framework can be generalized to be applied to other quantum control models. Compared with the traditional optimal control method, this deep reinforcement learning algorithm can realize efficient and precise control for multi-level quantum systems with different types of disturbances.
Unitary control and decoherence appear to be irreconcilable in quantum mechanics. When a quantum system interacts with an environment, control strategies usually fail due to decoherence. In this letter, we propose a time-optimal unitary control protocol suitable for quantum open systems. The method is based on succesive diabatic and sudden switch transitions in the avoided crossings of the energy spectra of closed systems. We show that the speed of this control protocol meets the fundamental bounds imposed by the quantum speed limit, thus making this scheme ideal for application where decoherence needs to be avoided. We show that our method can achieve complex control strategies with high accuracy in quantum open systems.