Do you want to publish a course? Click here

Fast Laser Cooling Using Optimal Quantum Control

94   0   0.0 ( 0 )
 Added by Chu Guo
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cooling down a trapped ion into its motional ground state is a central step for trapped ions based quantum information processing. State of the art cooling schemes often work under a set of optimal cooling conditions derived analytically using a perturbative approach, in which the sideband coupling is assumed to be the weakest of all the relevant transitions. As a result the cooling rate is severely limited. Here we propose to use quantum control technique powered with automatic differentiation to speed up the classical cooling schemes. We demonstrate the efficacy of our approach by applying it to find the optimal cooling conditions for classical sideband cooling and electromagnetically induced transparency cooling schemes, which are in general beyond the weak sideband coupling regime. Based on those numerically found optimal cooling conditions, we show that faster cooling can be achieved while at the same time a low average phonon occupation can be retained.



rate research

Read More

A method is proposed to cool down atoms in a harmonic trap without phase-space compression as in a perfectly slow adiabatic expansion, i.e., keeping the populations of the instantaneous initial and final levels invariant, but in a much shorter time. This may require that the harmonic trap becomes an expulsive parabolic potential in some time interval. The cooling times achieved are also shorter than previous minimal times using optimal-control bang-bang methods and real frequencies.
Quantum optimal control represents a powerful technique to enhance the performance of quantum experiments by engineering the controllable parameters of the Hamiltonian. However, the computational overhead for the necessary optimization of these control parameters drastically increases as their number grows. We devise a novel variant of a gradient-free optimal-control method by introducing the idea of phase-modulated driving fields, which allows us to find optimal control fields efficiently. We numerically evaluate its performance and demonstrate the advantages over standard Fourier-basis methods in controlling an ensemble of two-level systems showing an inhomogeneous broadening. The control fields optimized with the phase-modulated method provide an increased robustness against such ensemble inhomogeneities as well as control-field fluctuations and environmental noise, with one order of magnitude less of average search time. Robustness enhancement of single quantum gates is also achieved by the phase-modulated method. Under environmental noise, an XY-8 sequence constituted by optimized gates prolongs the coherence time by $50%$ compared with standard rectangular pulses in our numerical simulations, showing the application potential of our phase-modulated method in improving the precision of signal detection in the field of quantum sensing.
376 - Yuchen Peng , Frank Gaitan 2017
We present an approach to single-shot high-fidelity preparation of an $n$-qubit state based on neighboring optimal control theory. This represents a new application of the neighboring optimal control formalism which was originally developed to produce single-shot high-fidelity quantum gates. To illustrate the approach, and to provide a proof-of-principle, we use it to prepare the two qubit Bell state $|beta_{01}rangle = (1/sqrt{2})left[, |01rangle + |10rangle,right]$ with an error probability $epsilonsim 10^{-6}$ ($10^{-5}$) for ideal (non-ideal) control. Using standard methods in the literature, these high-fidelity Bell states can be leveraged to fault-tolerantly prepare the logical state $|overline{beta}_{01}rangle$.
We report on a systematic geometric procedure, built up on solutions designed in the absence of dissipation, to mitigate the effects of dissipation in the control of open quantum systems. Our method addresses a standard class of open quantum systems modeled by non-Hermitian Hamiltonians. It provides the analytical expression of the extra magnetic field to be superimposed to the driving field in order to compensate the geometric distortion induced by dissipation, and produces an exact geometric optimization of fast population transfer. Interestingly, it also preserves the robustness properties of protocols originally optimized against noise. Its extension to two interacting spins restores a fidelity close to unity for the fast generation of Bell state in the presence of dissipation.
Superfluidity is an emergent quantum phenomenon which arises due to strong interactions between elementary excitations in liquid helium. These excitations have been probed with great success using techniques such as neutron and light scattering. However measurements to-date have been limited, quite generally, to average properties of bulk superfluid or the driven response far out of thermal equilibrium. Here, we use cavity optomechanics to probe the thermodynamics of superfluid excitations in real-time. Furthermore, strong light-matter interactions allow both laser cooling and amplification of the thermal motion. This provides a new tool to understand and control the microscopic behaviour of superfluids, including phonon-phonon interactions, quantised vortices and two-dimensional quantum phenomena such as the Berezinskii-Kosterlitz-Thouless transition. The third sound modes studied here also offer a pathway towards quantum optomechanics with thin superfluid films, including femtogram effective masses, high mechanical quality factors, strong phonon-phonon and phonon-vortex interactions, and self-assembly into complex geometries with sub-nanometre feature size.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا