No Arabic abstract
Recently there has been interest in the physical properties of dark matter axion condensates. Due to gravitational attraction and self-interactions, they can organize into spatial localized clumps, whose properties were examined by us in Refs. [1, 2]. Since the axion condensate is coherently oscillating, it can conceivably lead to parametric resonance of photons, leading to exponential growth in photon occupancy number and subsequent radio wave emission. We show that while resonance always exists for spatially homogeneous condensates, its existence for a spatially localized clump condensate depends sensitively on the size of clump, strength of axion-photon coupling, and field amplitude. By decomposing the electromagnetic field into vector spherical harmonics, we are able to numerically compute the resonance from clumps for arbitrary parameters. We find that for spherically symmetric clumps, which are the true BEC ground states, the resonance is absent for conventional values of the QCD axion-photon coupling, but it is present for axions with moderately large couplings, or into hidden sector photons, or from scalar dark matter with repulsive interactions. We extend these results to non-spherically symmetric clumps, organized by finite angular momentum, and find that even QCD axion clumps with conventional couplings can undergo resonant decay for sufficiently large angular momentum. We discuss possible astrophysical consequences of these results, including the idea of a pile-up of clump masses and rapid electromagnetic emission in the sky from mergers.
If the present dark matter in the Universe annihilates into Standard Model particles, it must contribute to the gamma ray fluxes detected on the Earth. The magnitude of such contribution depends on the particular dark matter candidate, but certain features of the produced spectra may be analyzed in a rather model-independent fashion. In this communication we briefly revise the complete photon spectra coming from WIMP annihilation into Standard Model particle-antiparticle pairs obtained by extensive Monte Carlo simulations and consequent fitting functions presented by Dombriz et al. in a wide range of WIMP masses. In order to illustrate the usefulness of these fitting functions, we mention how these results may be applied to the so-called brane-world theories whose fluctuations, the branons, behave as WIMPs and therefore may spontaneously annihilate in SM particles. The subsequent $gamma$-rays signal in the framework of dark matter indirect searches from Milky Way dSphs and Galactic Center may provide first evidences for this scenario.
If there are a plethora of axions in nature, they may have a complicated potential and create an axion landscape. We study a possibility that one of the axions is so light that it is cosmologically stable, explaining the observed dark matter density. In particular we focus on a case in which two (or more) shift-symmetry breaking terms conspire to make the axion sufficiently light at the potential minimum. In this case the axion has a flat-bottomed potential. In contrast to the case in which a single cosine term dominates the potential, the axion abundance as well as its isocurvature perturbations are significantly suppressed. This allows an axion with a rather large mass to serve as dark matter without fine-tuning of the initial misalignment, and further makes higher-scale inflation to be consistent with the scenario.
Extending the Standard Model with three right-handed neutrinos and a simple QCD axion sector can account for neutrino oscillations, dark matter and baryon asymmetry; at the same time, it solves the strong CP problem, stabilizes the electroweak vacuum and can implement critical Higgs inflation (satisfying all current observational bounds). We perform here a general analysis of dark matter (DM) in such a model, which we call the $a u$MSM. Although critical Higgs inflation features a (quasi) inflection point of the inflaton potential we show that DM cannot receive a contribution from primordial black holes in the $a u$MSM. This leads to a multicomponent axion-sterile-neutrino DM and allows us to relate the axion parameters, such as the axion decay constant, to the neutrino parameters. We include several DM production mechanisms: the axion production via misalignment and decay of topological defects as well as the sterile-neutrino production through the resonant and non-resonant mechanisms and in the recently proposed CPT-symmetric universe.
Axion--photon interactions can lead to an enhancement of the electromagnetic field by parametric resonance in the presence of a cold axion background, for modes with a frequency close to half the axion mass. In this paper, we study the role of the axion momentum dispersion as well as the effects of a background gravitational potential, which can detune the resonance due to gravitational redshift. We show, by analytical as well as numerical calculations, that the resonance leads to an exponential growth of the photon field only if (a) the axion momentum spread is smaller than the inverse resonance length, and (b) the gravitational detuning distance is longer than the resonance length. For realistic parameter values, both effects strongly suppress the resonance and prevent the exponential growth of the photon field. In particular, the redshift due to the gravitational potential of our galaxy prevents the resonance from developing for photons in the observable frequency range, even assuming that all the dark matter consists of a perfectly cold axion condensate. For axion clumps with masses below $sim 10^{-13}, M_odot$, the momentum spread condition is more restrictive, whereas, for more massive clumps, the redshift condition dominates.
We propose a multi-messenger probe of QCD axion Dark Matter based on observations of black hole-neutron star binary inspirals. It is suggested that a dense Dark Matter spike may grow around intermediate mass black holes ($10^{3}-10^{5} mathrm{,M_{odot}}$). The presence of such a spike produces two unique effects: a distinct phase shift in the gravitational wave strain during the inspiral and an enhancement of the radio emission due to the resonant axion-photon conversion occurring in the neutron star magnetosphere throughout the inspiral and merger. Remarkably, the observation of the gravitational wave signal can be used to infer the Dark Matter density and, consequently, to predict the radio emission. We study the projected reach of the LISA interferometer and next-generation radio telescopes such as the Square Kilometre Array. Given a sufficiently nearby system, such observations will potentially allow for the detection of QCD axion Dark Matter in the mass range $10^{-7},mathrm{eV}$ to $10^{-5},mathrm{eV}$.