No Arabic abstract
We propose a multi-messenger probe of QCD axion Dark Matter based on observations of black hole-neutron star binary inspirals. It is suggested that a dense Dark Matter spike may grow around intermediate mass black holes ($10^{3}-10^{5} mathrm{,M_{odot}}$). The presence of such a spike produces two unique effects: a distinct phase shift in the gravitational wave strain during the inspiral and an enhancement of the radio emission due to the resonant axion-photon conversion occurring in the neutron star magnetosphere throughout the inspiral and merger. Remarkably, the observation of the gravitational wave signal can be used to infer the Dark Matter density and, consequently, to predict the radio emission. We study the projected reach of the LISA interferometer and next-generation radio telescopes such as the Square Kilometre Array. Given a sufficiently nearby system, such observations will potentially allow for the detection of QCD axion Dark Matter in the mass range $10^{-7},mathrm{eV}$ to $10^{-5},mathrm{eV}$.
A portion of light scalar dark matter, especially axions, may organize into gravitationally bound clumps (stars) and be present in large number in the galaxy today. It is therefore of utmost interest to determine if there are novel observational signatures of this scenario. Work has shown that for moderately large axion-photon couplings, such clumps can undergo parametric resonance into photons, for clumps above a critical mass $M^{star}_c$ determined precisely by some of us in Ref. [1]. In order to obtain a clump above the critical mass in the galaxy today would require mergers. In this work we perform full 3-dimensional simulations of pairs of axion clumps and determine the conditions under which mergers take place through the emission of scalar waves, including analyzing head-on and non-head-on collisions, phase dependence, and relative velocities. Consistent with other work in the literature, we find that the final mass from the merger $M^{star}_{text{final}}approx 0.7(M^{star}_1+M^{star}_2)$ is larger than each of the original clump masses (for $M^{star}_1sim M^{star}_2$). Hence, it is possible for sub-critical mass clumps to merge and become super-critical and therefore undergo parametric resonance into photons. We find that mergers are expected to be kinematically allowed in the galaxy today for high Peccei-Quinn scales, which is strongly suggested by unification ideas, although the collision rate is small. While mergers can happen for axions with lower Peccei-Quinn scales due to statistical fluctuations in relative velocities, as they have a high collision rate. We estimate the collision and merger rates within the Milky Way galaxy today. We find that a merger leads to a flux of energy on earth that can be appreciable and we mention observational search strategies.
We investigate the possibility that the Peccei-Quinn phase transition occurs at a temperature far below the symmetry breaking scale. Low phase transition temperatures are typical in supersymmetric theories, where symmetry breaking fields have small masses. We find that QCD axions are abundantly produced just after the phase transition. The observed dark matter abundance is reproduced even if the decay constant is much lower than $10^{11}$ GeV. The produced axions tend to be warm. For some range of the decay constant, the effect of the predicted warmness on structure formation can be confirmed by future observations of 21 cm lines. A portion of parameter space requires a mixing between the Peccei-Quinn symmetry breaking field and the Standard Model Higgs, and predicts an observable rate of rare Kaon decays.
We study the underlying theory of dielectric haloscopes, a new way to detect dark matter axions. When an interface between different dielectric media is inside a magnetic field, the oscillating axion field acts as a source of electromagnetic waves, which emerge in both directions perpendicular to the surface. The emission rate can be boosted by multiple layers judiciously placed to achieve constructive interference and by a large transverse area. Starting from the axion-modified Maxwell equations, we calculate the efficiency of this new dielectric haloscope approach. This technique could potentially search the unexplored high-frequency range of 10--100 GHz (axion mass 40--400 $mu$eV), where traditional cavity resonators have difficulties reaching the required volume.
As a cold dark matter candidate, the QCD axion may form Bose-Einstein condensates, called axion stars, with masses around $10^{-11},M_{odot}$. In this paper, we point out that a brand new astrophysical object, a Hydrogen Axion Star (HAS), may well be formed by ordinary baryonic matter becoming gravitationally bound to an axion star. We study the properties of the HAS and find that the hydrogen cloud has a high pressure and temperature in the center and is likely in the liquid metallic hydrogen state. Because of the high particle number densities for both the axion star and the hydrogen cloud, the feeble interaction between axion and hydrogen can still generate enough internal power, around $10^{13}~mbox{W}times(m_a/5~mbox{meV})^4$, to make these objects luminous point sources. High resolution ultraviolet, optical and infrared telescopes can discover HAS via black-body radiation.
Recently there has been interest in the physical properties of dark matter axion condensates. Due to gravitational attraction and self-interactions, they can organize into spatial localized clumps, whose properties were examined by us in Refs. [1, 2]. Since the axion condensate is coherently oscillating, it can conceivably lead to parametric resonance of photons, leading to exponential growth in photon occupancy number and subsequent radio wave emission. We show that while resonance always exists for spatially homogeneous condensates, its existence for a spatially localized clump condensate depends sensitively on the size of clump, strength of axion-photon coupling, and field amplitude. By decomposing the electromagnetic field into vector spherical harmonics, we are able to numerically compute the resonance from clumps for arbitrary parameters. We find that for spherically symmetric clumps, which are the true BEC ground states, the resonance is absent for conventional values of the QCD axion-photon coupling, but it is present for axions with moderately large couplings, or into hidden sector photons, or from scalar dark matter with repulsive interactions. We extend these results to non-spherically symmetric clumps, organized by finite angular momentum, and find that even QCD axion clumps with conventional couplings can undergo resonant decay for sufficiently large angular momentum. We discuss possible astrophysical consequences of these results, including the idea of a pile-up of clump masses and rapid electromagnetic emission in the sky from mergers.