Do you want to publish a course? Click here

On Freud-Sobolev type orthogonal polynomials

137   0   0.0 ( 0 )
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

In this contribution we deal with sequences of monic polynomials orthogonal with respect to the Freud Sobolev-type inner product begin{equation*} leftlangle p,qrightrangle _{s}=int_{mathbb{R}}p(x)q(x)e^{-x^{4}}dx+M_{0}p(0)q(0)+M_{1}p^{prime }(0)q^{prime }(0), end{equation*}% where $p,q$ are polynomials, $M_{0}$ and $M_{1}$ are nonnegative real numbers. Connection formulas between these polynomials and Freud polynomials are deduced and, as a consequence, a five term recurrence relation for such polynomials is obtained. The location of their zeros as well as their asymptotic behavior is studied. Finally, an electrostatic interpretation of them in terms of a logarithmic interaction in the presence of an external field is given.



rate research

Read More

In this contribution we consider the sequence ${Q_{n}^{lambda}}_{ngeq 0} $ of monic polynomials orthogonal with respect to the following inner product involving differences begin{equation*} langle p,qrangle _{lambda}=int_{0}^{infty}pleft(xright) qleft(xright) dpsi ^{(a)}(x)+lambda ,Delta p(c)Delta q(c), end{equation*} where $lambda in mathbb{R}_{+}$, $Delta $ denotes the forward difference operator defined by $Delta fleft(xright) =fleft(x+1right) -fleft(xright) $, $psi ^{(a)}$ with $a>0$ is the well known Poisson distribution of probability theory% begin{equation*} dpsi ^{(a)}(x)=frac{e^{-a}a^{x}}{x!}quad text{at}x=0,1,2,ldots, end{equation*}% and $cin mathbb{R}$ is such that $psi ^{(a)}$ has no points of increase in the interval $(c,c+1)$. We derive its corresponding hypergeometric representation. The ladder operators and two differe
For the weight function $W_mu(x) = (1-|x|^2)^mu$, $mu > -1$, $lambda > 0$ and $b_mu$ a normalizing constant, a family of mutually orthogonal polynomials on the unit ball with respect to the inner product $$ la f,g ra = {b_mu [int_{BB^d} f(x) g(x) W_mu(x) dx + lambda int_{BB^d} abla f(x) cdot abla g(x) W_mu(x) dx]} $$ are constructed in terms of spherical harmonics and a sequence of Sobolev orthog onal polynomials of one variable. The latter ones, hence, the orthogonal polynomials with respect to $la cdot,cdotra$, can be generated through a recursive formula.
The q-Hermite I-Sobolev type polynomials of higher order are consider for their study. Their hypergeometric representation is provided together with further useful properties such as several structure relations which give rise to a three-term recurrence relation of their elements. Two different q-difference equations satisfied by the q-Hermite I-Sobolev type polynomials of higher order are also established.
For a bilinear form obtained by adding a Dirac mass to a positive definite moment functional in several variables, explicit formulas of orthogonal polynomials are derived from the orthogonal polynomials associated with the moment functional. Explicit formula for the reproducing kernel is also derived and used to establish certain inequalities for classical orthogonal polynomials.
132 - K. S. Nisar 2017
The aim of this paper is to apply generalized operators of fractional integration and differentiation involving Appells function $F_{3}(:)$ due to Marichev-Saigo-Maeda (MSM), to the Jacobi type orthogonal polynomials. The results are expressed in terms of generalized hypergeometric function. Some of the interesting special cases of the main results also established.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا