Do you want to publish a course? Click here

Generalized fractional operator representations of Jacobi type orthogonal polynomials

133   0   0.0 ( 0 )
 Added by K S Nisar Dr
 Publication date 2017
  fields
and research's language is English
 Authors K. S. Nisar




Ask ChatGPT about the research

The aim of this paper is to apply generalized operators of fractional integration and differentiation involving Appells function $F_{3}(:)$ due to Marichev-Saigo-Maeda (MSM), to the Jacobi type orthogonal polynomials. The results are expressed in terms of generalized hypergeometric function. Some of the interesting special cases of the main results also established.



rate research

Read More

The present paper is about Bernstein-type estimates for Jacobi polynomials and their applications to various branches in mathematics. This is an old topic but we want to add a new wrinkle by establishing some intriguing connections with dispersive estimates for a certain class of Schrodinger equations whose Hamiltonian is given by the generalized Laguerre operator. More precisely, we show that dispersive estimates for the Schrodinger equation associated with the generalized Laguerre operator are connected with Bernstein-type inequalities for Jacobi polynomials. We use known uniform estimates for Jacobi polynomials to establish some new dispersive estimates. In turn, the optimal dispersive decay estimates lead to new Bernstein-type inequalities.
We consider a set of measures on the real line and the corresponding system of multiple orthogonal polynomials (MOPs) of the first and second type. Under some very mild assumptions, which are satisfied by Angelesco systems, we define self-adjoint Jacobi matrices on certain rooted trees. We express their Greens functions and the matrix elements in terms of MOPs. This provides a generalization of the well-known connection between the theory of polynomials orthogonal on the real line and Jacobi matrices on $mathbb{Z}_+$ to higher dimension. We illustrate importance of this connection by proving ratio asymptotics for MOPs using methods of operator theory.
In this contribution we deal with sequences of monic polynomials orthogonal with respect to the Freud Sobolev-type inner product begin{equation*} leftlangle p,qrightrangle _{s}=int_{mathbb{R}}p(x)q(x)e^{-x^{4}}dx+M_{0}p(0)q(0)+M_{1}p^{prime }(0)q^{prime }(0), end{equation*}% where $p,q$ are polynomials, $M_{0}$ and $M_{1}$ are nonnegative real numbers. Connection formulas between these polynomials and Freud polynomials are deduced and, as a consequence, a five term recurrence relation for such polynomials is obtained. The location of their zeros as well as their asymptotic behavior is studied. Finally, an electrostatic interpretation of them in terms of a logarithmic interaction in the presence of an external field is given.
147 - C.-I. Chou , C.-L. Ho 2012
We present four types of infinitely many exactly solvable Fokker-Planck equations, which are related to the newly discovered exceptional orthogonal polynomials. They represent the deform
For a bilinear form obtained by adding a Dirac mass to a positive definite moment functional in several variables, explicit formulas of orthogonal polynomials are derived from the orthogonal polynomials associated with the moment functional. Explicit formula for the reproducing kernel is also derived and used to establish certain inequalities for classical orthogonal polynomials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا