Do you want to publish a course? Click here

On second order q-difference equations for high-order Sobolev-type q-Hermite orthogonal polynomials

278   0   0.0 ( 0 )
 Added by Carlos Hermoso
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The q-Hermite I-Sobolev type polynomials of higher order are consider for their study. Their hypergeometric representation is provided together with further useful properties such as several structure relations which give rise to a three-term recurrence relation of their elements. Two different q-difference equations satisfied by the q-Hermite I-Sobolev type polynomials of higher order are also established.



rate research

Read More

This contribution deals with the sequence ${mathbb{U}_{n}^{(a)}(x;q,j)}_{ngeq 0}$ of monic polynomials, orthogonal with respect to a Sobolev-type inner product related to the Al-Salam--Carlitz I orthogonal polynomials, and involving an arbitrary number of $q$-derivatives on the two boundaries of the corresponding orthogonality interval. We provide sever
We investigate and derive second solutions to linear homogeneous second-order difference equations using a variety of methods, in each case going beyond the purely formal solution and giving explicit expressions for the second solution. We present a new implementation of dAlemberts reduction of order method, applying it to linear second-order recursion equations. Further, we introduce an iterative method to obtain a general solution, giving two linearly independent polynomial solutions to the recurrence relation. In the case of a particular confluent hypergeometric function for which the standard second solution is not independent of the first, i.e. the solutions are degenerate, we use the corresponding differential equation and apply the extended Cauchy-integral method to find a polynomial second solution for the difference equation. We show that the standard dAlembert method also generates this polynomial solution.
In this contribution we deal with sequences of monic polynomials orthogonal with respect to the Freud Sobolev-type inner product begin{equation*} leftlangle p,qrightrangle _{s}=int_{mathbb{R}}p(x)q(x)e^{-x^{4}}dx+M_{0}p(0)q(0)+M_{1}p^{prime }(0)q^{prime }(0), end{equation*}% where $p,q$ are polynomials, $M_{0}$ and $M_{1}$ are nonnegative real numbers. Connection formulas between these polynomials and Freud polynomials are deduced and, as a consequence, a five term recurrence relation for such polynomials is obtained. The location of their zeros as well as their asymptotic behavior is studied. Finally, an electrostatic interpretation of them in terms of a logarithmic interaction in the presence of an external field is given.
145 - Ilia Krasikov 2002
We shall give bounds on the spacing of zeros of certain functions belonging to the Laguerre-Polya class and satisfying a second order differential equation. As a corollary we establish new sharp inequalities on the extreme zeros of the Hermite, Laguerre and Jacobi polinomials, which are uniform in all the parameters.
In this contribution we consider the sequence ${Q_{n}^{lambda}}_{ngeq 0} $ of monic polynomials orthogonal with respect to the following inner product involving differences begin{equation*} langle p,qrangle _{lambda}=int_{0}^{infty}pleft(xright) qleft(xright) dpsi ^{(a)}(x)+lambda ,Delta p(c)Delta q(c), end{equation*} where $lambda in mathbb{R}_{+}$, $Delta $ denotes the forward difference operator defined by $Delta fleft(xright) =fleft(x+1right) -fleft(xright) $, $psi ^{(a)}$ with $a>0$ is the well known Poisson distribution of probability theory% begin{equation*} dpsi ^{(a)}(x)=frac{e^{-a}a^{x}}{x!}quad text{at}x=0,1,2,ldots, end{equation*}% and $cin mathbb{R}$ is such that $psi ^{(a)}$ has no points of increase in the interval $(c,c+1)$. We derive its corresponding hypergeometric representation. The ladder operators and two differe
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا