We present a hundred-watt-level linearly-polarized random fiber laser (RFL) pumped by incoherent broadband amplified spontaneous emission (ASE) source and prospect the power scaling potential theoretically. The RFL employs half-opened cavity structure which is composed by a section of 330 m polarization maintained (PM) passive fiber and two PM high reflectivity fiber Bragg gratings. The 2nd order Stokes light centered at 1178 nm reaches the pump limited maximal power of 100.7 W with a full width at half-maximum linewidth of 2.58 nm and polarization extinction ratio of 23.5 dB. The corresponding ultimate quantum efficiency of pump to 2nd order Stokes light is 89.01%. To the best of our knowledge, this is the first demonstration of linearly-polarized high-order RFL with hundred-watt output power. Furthermore, the theoretical investigation indicates that 300 W-level linearly-polarized single-mode 1st order Stokes light can be obtained from incoherently pumped RFL with 100 m PM passive fiber.
We investigate the effects of two dimensional confinement on the lasing properties of a classical random laser system operating in the incoherent feedback (diffusive) regime. A suspension of 250nm rutile (TiO2) particles in a Rhodamine 6G solution was inserted into the hollow core of a photonic crystal fiber (PCF) generating the first random fiber laser and a novel quasi-one-dimensional RL geometry. Comparison with similar systems in bulk format shows that the random fiber laser presents an efficiency that is at least two orders of magnitude higher.
A temporal variation of a spectrum of excited modes in a continuously pumped erbium-doped random fiber laser (RFL), based on randomly distributed Bragg gratings, is studied. Developed phenomenological theoretical model assumes hard excitation mechanism of the eigenmodes instability. The model explains qualitatively peculiarities of the spectrum variation, observed experimentally.
This work reports single-frequency laser oscillation at 1003.4 nm of an optically pumped external cavity semiconductor laser. By using a gain structure bonded onto a high conductivity substrate, we demonstrate both theoretically and experimentally the strong reduction of the thermal resistance of the active semiconductor medium, resulting in a high power laser emission. The spectro-temporal dynamics of the laser is also explained. Furthermore, an intracavity frequency-doubling crystal was used to obtain a stable single-mode generation of blue (501.5 nm) with an output power around 60 mW.
In this paper, a technique combing cascaded energy-transfer pumping (CEP) method and master-oscillator power-amplifier (MOPA) configuration is proposed for power scaling of 1.6-um-band single-frequency fiber lasers (SFFLs), where the Er3+ ion has a limited gain. The CEP technique is fulfilled by coupling a primary signal light at 1.6 um and a C-band auxiliary laser. The numerical model of the fiber amplifier with the CEP technique reveals that the energy transfer process involves the pump competition and the in-band particle transition between the signal and auxiliary lights. Moreover, for the signal emission, the population density in the upper level is enhanced and the effective population inversion is achieved due to the CEP. A single-frequency MOPA laser at 1603 nm with an output power of 52.6 W is obtained experimentally. Besides, a slope efficiency of 30.4% is improved by more than 10% through the CEP technique. Both the output power and slope efficiency are by far the highest for 1.6-um-band SFFLs. Meanwhile, a laser linewidth of 5.2 kHz and a polarization-extinction ratio of ~18 dB are obtained at the maximum output power. The proposed technique provides an optional method of increasing the slope efficiency and power scaling for fiber lasers operating at L-band.
In this contribution we investigate the transversal mode instability behavior of an ytterbium doped commercial 20/400 fiber and obtain 2.9 kW of output power after optimizing the influencing parameters. In this context, we evaluate the influence of the bend diameter and the pump wavelength within the scope of the absorption length and the length of the fiber. Furthermore with a newly developed fiber we report on 4.4 kW of single-mode output power at 40 cm bend diameter.