Do you want to publish a course? Click here

Non-equilibrium Atomic Condensates and Mixtures: Collective Modes, Condensate Growth and Thermalization

110   0   0.0 ( 0 )
 Added by Kean Loon Lee
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The non-equilibrium dynamics of trapped ultracold atomic gases, or mixtures thereof, is an extremely rich subject. Despite 20 years of studies, and remarkable progress mainly on the experimental front, numerous open question remain, related to the growth, relaxation and thermalisation of such systems, and there is still no universally-accepted theory for their theoretical description. In this paper we discuss one of the state-of-the-art kinetic approaches, which gives an intuitive picture of the physical processes happening at the microscopic scale, being broadly applicable both below and above the critical region (but not within the critical region itself). Specifically, the Zaremba-Nikuni-Griffin (ZNG) scheme provides a self-consistent description of the coupling between the condensate and the thermal atoms, including the collisions between these two subsystems. It has been successfully tested against experiments in various settings, including collective modes (e.g. monopole, dipole and quadrupole modes), topological excitations (solitons and vortices) and surface evaporative cooling. Here, we show that it can capture two important aspects of non- equilibrium dynamics for both single-component and two-component BECs: the Kohn mode (the undamped dipole oscillation independent of interactions and temperature) and (re)thermalization leading to condensate growth following sudden evaporation. Our simulations, performed in a spherically-symmetric trap reveal (i) an interesting two-stage dynamics and the emergence of a prominent monopole mode in the evaporative cooling of a single component Bose gas, and (ii) the long thermalization time associated with the sympathetic cooling of a realistic two-component mixture. Related open questions arise about the mechanisms and the nature of thermalization in such systems, where further controlled experiments are needed for benchmarking.



rate research

Read More

We study the richer structures of quasi-one-dimensional Bogoliubov-de Genes collective excitations of F = 1 spinor Bose-Einstein condensate in a harmonic trap potential loaded in an optical lattice. Employing a perturbative method we report general analytical expressions for the confined collective polar and ferromagnetic Goldstone modes. In both cases the excited eigenfrequencies are given as function of the 1D effective coupling constants, trap frequency and optical lattice parameters. It is shown that the main contribution of the optical lattice laser intensity is to shift the confined phonon frequencies. Moreover, for high intensities, the excitation spectrum becomes independent of the self-interaction parameters. We reveal some features of the evolution for the Goldstone modes as well as the condensate densities from the ferromagnetic to the polar phases.
We study binary Bose-Einstein condensates subject to synthetic magnetic fields in mutually parallel or antiparallel directions. Within the mean-field theory, the two types of fields have been shown to give the same vortex-lattice phase diagram. We develop an improved effective field theory to study properties of collective modes and ground-state intercomponent entanglement. Here, we point out the importance of introducing renormalized coupling constants for coarse-grained densities. We show that the low-energy excitation spectra for the two types of fields are related to each other by suitable rescaling using the renormalized constants. By calculating the entanglement entropy, we find that for an intercomponent repulsion (attraction), the two components are more strongly entangled in the case of parallel (antiparallel) fields, in qualitative agreement with recent studies for a quantum (spin) Hall regime. We also find that the entanglement spectrum exhibits an anomalous square-root dispersion relation, which leads to a subleading logarithmic term in the entanglement entropy. All of these are confirmed by numerical calculations based on the Bogoliubov theory with the lowest-Landau-level approximation. Finally, we investigate the effects of quantum fluctuations on the phase diagrams by calculating the correction to the ground-state energy due to zero-point fluctuations in the Bogoliubov theory. We find that the boundaries between rhombic-, square-, and rectangular-lattice phases shift appreciably with a decrease in the filling factor.
We report on the observation of quantum coherence of Bose-Einstein condensed photons in an optically-pumped, dye-filled microcavity. We find that coherence is long-range in space and time above condensation threshold, but short-range below threshold, compatible with thermal-equilibrium theory. Far above threshold, the condensate is no longer at thermal equilibrium and is fragmented over non-degenerate, spatially overlapping modes. A microscopic theory including cavity loss, molecular structure and relaxation shows that this multimode condensation is similar to multimode lasing induced by imperfect gain clamping.
357 - Xiuqin Zhao , Ni Liu , 2017
In this paper we investigate the ground-state properties and related quantum phase transitions for the two-component Bose-Einstein condensate in a single-mode optical cavity. Apart from the usual normal and superradiant phases multi-stable macroscopic quantum states are realized by means of the spin-coherent-state variational method. We demonstrate analytically the stimulated radiation from collective state of atomic population inversion, which does not exist in the normal Dicke model with single-component atoms. It is also revealed that the stimulated radiation can be generated only from one component of atoms and the other remains in the ordinary superradiant state. However the order of superradiant and stimulatedradiation states is interchangeable between two components of atoms by tuning the relative atom-field couplings and the frequency detuning as well.
We investigate the steady state of a system of photons in a pumped dye-filled microcavity. By varying pump and thermalization the system can be tuned between Bose-Einstein condensation, multimode condensation, and lasing. We present a rich non-equilibrium phase diagram which exhibits transitions between these phases, including decondensation of individual modes under conditions that would typically favor condensation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا