Do you want to publish a course? Click here

Superconductivity on the verge of electronic topological transition in Fe based superconductors

101   0   0.0 ( 0 )
 Added by Haranath Ghosh
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

A comprehensive first principles study on the electronic topological transition in a number of 122 family of Fe based superconductors is presented. Doping as well as temperature driven Lifshitz transitions are found from first principles simulations in a variety of Fe based superconductors that are consistent with experimental findings. In all the studied compounds the Lifshitz transitions are consistently found to occur at a doping concentration where superconductivity is highest and magnetism disappears. Systematically, the Lifshitz transition occurs in the electron Fermi surfaces for hole doping, whereas in hole Fermi surfaces for electron doping as well as iso-electronic doping. Temperature driven Lifshitz transition is found to occur in the iso-electronic Ru-doped BaFe$_2$As$_2$ compounds. Fermi surface areas are found to carry sensitivity of topological modifications more acutely than the band structures and can be used as a better experimental probe to identify electronic topological transition.



rate research

Read More

Direct quantitative correlations between the orbital order and orthorhombicity is achieved in a number of Fe-based superconductors of 122 family. The former (orbital order) is calculated from first principles simulations using experimentally determined doping and temperature dependent structural parameters while the latter (the orthorhombicity) is taken from already established experimental studies; when normalized, both the above quantities quantitatively corresponds to each other in terms of their doping as well as temperature variations. This proves that the structural transition in Fe-based materials is electronic in nature due to orbital ordering. An universal correlations among various structural parameters and electronic structure are also obtained. Most remarkable among them is the mapping of two Fe--Fe distances in the low temperature orthorhombic phase, with the band energies E$_{d_{xz}}$, E$_{d_{yz}}$ of Fe at the high symmetry points of the Brillouin zone. The fractional co-ordinate $z_{As}$ of $As$ which essentially determines anion height is inversely (directly) proportional to Fe-As bond distances (with exceptions of K doped BaFe$_2$As$_2$) for hole (electron) doped materials as a function of doping. On the other hand, Fe-As bond-distance is found to be inversely (directly) proportional to the density of states at the Fermi level for hole (electron) doped systems. Implications of these results to current issues of Fe based superconductivity are discussed.
We show that only a few percentage of Sn doping at the Ba site on BaFe$_2$As$_2$, can cause electronic topological transition, namely, the Lifshitz transition. A hole like d$_{xy}$ band of Fe undergoes electron like transition due to 4% Sn doping. Lifshitz transition is found in BaFe$_2$As$_2$ system around all the high symmetry points. Our detailed first principles simulation predicts absence of any Lifshitz transition in other 122 family compounds like SrFe$_2$As$_2$, CaFe$_2$As$_2$. This work bears practical significance due to the facts that a few percentage of Sn impurity is in-built in tin-flux grown single crystals method of synthesizing 122 materials and inter-relationship among the Lifshitz transition, magnetism and superconductivity.
Based on a two-orbital honeycomb lattice model and random phase approximation, we investigate the pairing symmetry of the Ni-based transition-metal trichalcogenide. We find that an I-wave (A2g) state and a chiral d-wave state are dominant and nearly degenerate for typical electron and hole dopings. These two states carry nontrivial topological properties, which are manifested by the presence of chiral edge states in the d+id-wave state and dispersionless Andreev bound state at zero energy in the I-wave state. Ni-based transition-metal trichalcogenides provide us a new platform to study the exotic phenomena emerged from electron-electron correlation effects.
421 - A.V. Chubukov , D. Efremov , 2008
We analyze antiferromagnetism and superconductivity in novel $Fe-$based superconductors within the itinerant model of small electron and hole pockets near $(0,0)$ and $(pi,pi)$. We argue that the effective interactions in both channels logarithmically flow towards the same values at low energies, {it i.e.}, antiferromagnetism and superconductivity must be treated on equal footings. The magnetic instability comes first for equal sizes of the two pockets, but looses to superconductivity upon doping. The superconducting gap has no nodes, but changes sign between the two Fermi surfaces (extended s-wave symmetry). We argue that the $T$ dependencies of the spin susceptibility and NMR relaxation rate for such state are exponential only at very low $T$, and can be well fitted by power-laws over a wide $T$ range below $T_c$.
We found that under pressure SnO with alpha-PbO structure, the same structure as in many Fe-based superconductors, e.g. beta-FeSe, undergoes a transition to a superconducting state for p > 6 GPa with a maximum Tc of 1.4 K at p = 9.3 GPa. The pressure dependence of Tc reveals a dome-like shape and superconductivity disappears for p > 16 GPa. It is further shown from band structure calculations that SnO under pressure exhibits a Fermi surface topology similar to that reported for some Fe-based superconductors and that the nesting between the hole and electron pockets correlates with the change of Tc as a function of pressure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا