Do you want to publish a course? Click here

Assessing Learning Outcomes in Middle-Division Classical Mechanics: The Colorado Classical Mechanics/Math Methods Instrument

55   0   0.0 ( 0 )
 Added by Marcos Caballero
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Reliable and validated assessments of introductory physics have been instrumental in driving curricular and pedagogical reforms that lead to improved student learning. As part of an effort to systematically improve our sophomore-level Classical Mechanics and Math Methods course (CM 1) at CU Boulder, we have developed a tool to assess student learning of CM 1 concepts in the upper-division. The Colorado Classical Mechanics/Math Methods Instrument (CCMI) builds on faculty consensus learning goals and systematic observations of student difficulties. The result is a 9-question open-ended post-test that probes student learning in the first half of a two-semester classical mechanics / math methods sequence. In this paper, we describe the design and development of this instrument, its validation, and measurements made in classes at CU Boulder and elsewhere.



rate research

Read More

This paper reports the results of an ongoing in-depth analysis of the classical trajectories of the class of non-Hermitian $PT$-symmetric Hamiltonians $H=p^2+ x^2(ix)^varepsilon$ ($varepsilongeq0$). A variety of phenomena, heretofore overlooked, have been discovered such as the existence of infinitely many separatrix trajectories, sequences of critical initial values associated with limiting classical orbits, regions of broken $PT$-symmetric classical trajectories, and a remarkable topological transition at $varepsilon=2$. This investigation is a work in progress and it is not complete; many features of complex trajectories are still under study.
It is shown that Schrodingers equation and Borns rule are sufficient to ensure that the states of macroscopic collective coordinate subsystems are microscopically localized in phase space and that the localized state follows the classical trajectory with random quantum noise that is indistinguishable from the pseudo-random noise of classical Brownian motion. This happens because in realistic systems the localization rate determined by the coupling to the environment is greater than the Lyapunov exponent that governs chaotic spreading in phase space. For realistic systems, the trajectories of the collective coordinate subsystem are at the same time an unravelling and a set of consistent/decoherent histories. Different subsystems have their own stochastic dynamics that generally knit together to form a global dynamics, although in certain contrived thought experiments, most notably Wigners friend, in the contrary, there is observer complementarity.
We briefly show how classical mechanics can be rederived and better understood as a consequence of three assumptions: infinitesimal reducibility, deterministic and reversible evolution, and kinematic equivalence.
Prior research has shown that physics students often think about experimental procedures and data analysis very differently from experts. One key framework for analyzing student thinking has found that student thinking is more point-like, putting emphasis on the results of a single experimental trial, whereas set-like thinking relies on the results of many trials. Recent work, however, has found that students rarely fall into one of these two extremes, which may be a limitation of how student thinking is evaluated. Measurements of student thinking have focused on probing students procedural knowledge by asking them, for example, what steps they might take next in an experiment. Two common refrains are to collect more data, or to improve the experiment and collect better data. In both of these cases, the underlying reasons behind student responses could be based in point-like or set-like thinking. In this study we use individual student interviews to investigate how advanced physics students believe the collection of more and better data will affect the results of a classical and a quantum mechanical experiment. The results inform future frameworks and assessments for characterizing students thinking between the extremes of point and set reasoning in both classical and quantum regimes.
In this paper we discuss how the gauge principle can be applied to classical-mechanics models with finite degrees of freedom. The local invariance of a model is understood as its invariance under the action of a matrix Lie group of transformations parametrized by arbitrary functions. It is formally presented how this property can be introduced in such systems, followed by modern applications. Furthermore, Lagrangians describing classical-mechanics systems with local invariance are separated in equivalence classes according to their local structures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا