No Arabic abstract
It is shown that Schrodingers equation and Borns rule are sufficient to ensure that the states of macroscopic collective coordinate subsystems are microscopically localized in phase space and that the localized state follows the classical trajectory with random quantum noise that is indistinguishable from the pseudo-random noise of classical Brownian motion. This happens because in realistic systems the localization rate determined by the coupling to the environment is greater than the Lyapunov exponent that governs chaotic spreading in phase space. For realistic systems, the trajectories of the collective coordinate subsystem are at the same time an unravelling and a set of consistent/decoherent histories. Different subsystems have their own stochastic dynamics that generally knit together to form a global dynamics, although in certain contrived thought experiments, most notably Wigners friend, in the contrary, there is observer complementarity.
The Newton--Hooke duality and its generalization to arbitrary power laws in classical, semiclassical and quantum mechanics are discussed. We pursue a view that the power-law duality is a symmetry of the action under a set of duality operations. The power dual symmetry is defined by invariance and reciprocity of the action in the form of Hamiltons characteristic function. We find that the power-law duality is basically a classical notion and breaks down at the level of angular quantization. We propose an ad hoc procedure to preserve the dual symmetry in quantum mechanics. The energy-coupling exchange maps required as part of the duality operations that take one system to another lead to an energy formula that relates the new energy to the old energy. The transformation property of {the} Green function satisfying the radial Schrodinger equation yields a formula that relates the new Green function to the old one. The energy spectrum of the linear motion in a fractional power potential is semiclassically evaluated. We find a way to show the Coulomb--Hooke duality in the supersymmetric semiclassical action. We also study the confinement potential problem with the help of the dual structure of a two-term power potential.
Recently a new attempt to go beyond quantum mechanics (QM) was presented in the form of so called prequantum classical statistical field theory (PCSFT). Its main experimental prediction is violation of Borns rule which provides only an approximative description of real probabilities. We expect that it will be possible to design numerous experiments demonstrating violation of Borns rule. Moreover, recently the first experimental evidence of violation was found in the triple slits interference experiment, see cite{WWW}. Although this experimental test was motivated by another prequantum model, it can be definitely considered as at least preliminary confirmation of the main prediction of PCSFT. In our approach quantum particles are just symbolic representations of prequantum random fields, e.g., electron-field or neutron-field; photon is associated with classical random electromagnetic field. Such prequantum fields fluctuate on time and space scales which are essentially finer than scales of QM, cf. `t Hoofts attempt to go beyond QM cite{H1}--cite{TH2}. In this paper we elaborate a detection model in the PCSFT-framework. In this model classical random fields (corresponding to quantum particles) interact with detectors inducing probabilities which match with Borns rule only approximately. Thus QM arises from PCSFT as an approximative theory. New tests of violation of Borns rule are proposed.
In Mod. Phys. Lett. A 9, 3119 (1994), one of us (R.D.S) investigated a formulation of quantum mechanics as a generalized measure theory. Quantum mechanics computes probabilities from the absolute squares of complex amplitudes, and the resulting interference violates the (Kolmogorov) sum rule expressing the additivity of probabilities of mutually exclusive events. However, there is a higher order sum rule that quantum mechanics does obey, involving the probabilities of three mutually exclusive possibilities. We could imagine a yet more general theory by assuming that it violates the next higher sum rule. In this paper, we report results from an ongoing experiment that sets out to test the validity of this second sum rule by measuring the interference patterns produced by three slits and all the possible combinations of those slits being open or closed. We use attenuated laser light combined with single photon counting to confirm the particle character of the measured light.
We present a new experimental approach using a three-path interferometer and find a tighter empirical upper bound on possible violations of Borns Rule. A deviation from Borns rule would result in multi-order interference. Among the potential systematic errors that could lead to an apparent violation we specifically study the nonlinear response of our detectors and present ways to calibrate this error in order to obtain an even better bound.
The Generalized Uncertainty Principle (GUP) has been directly applied to the motion of (macroscopic) test bodies on a given space-time in order to compute corrections to the classical orbits predicted in Newtonian Mechanics or General Relativity. These corrections generically violate the Equivalence Principle. The GUP has also been indirectly applied to the gravitational source by relating the GUP modified Hawking temperature to a deformation of the background metric. Such a deformed background metric determines new geodesic motions without violating the Equivalence Principle. We point out here that the two effects are mutually exclusive when compared with experimental bounds. Moreover, the former stems from modified Poisson brackets obtained from a wrong classical limit of the deformed canonical commutators.