Do you want to publish a course? Click here

Classical gauge principle -- From field theories to classical mechanics

66   0   0.0 ( 0 )
 Added by Bruno Rizzuti
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we discuss how the gauge principle can be applied to classical-mechanics models with finite degrees of freedom. The local invariance of a model is understood as its invariance under the action of a matrix Lie group of transformations parametrized by arbitrary functions. It is formally presented how this property can be introduced in such systems, followed by modern applications. Furthermore, Lagrangians describing classical-mechanics systems with local invariance are separated in equivalence classes according to their local structures.



rate research

Read More

This paper reports the results of an ongoing in-depth analysis of the classical trajectories of the class of non-Hermitian $PT$-symmetric Hamiltonians $H=p^2+ x^2(ix)^varepsilon$ ($varepsilongeq0$). A variety of phenomena, heretofore overlooked, have been discovered such as the existence of infinitely many separatrix trajectories, sequences of critical initial values associated with limiting classical orbits, regions of broken $PT$-symmetric classical trajectories, and a remarkable topological transition at $varepsilon=2$. This investigation is a work in progress and it is not complete; many features of complex trajectories are still under study.
(Draft 3) A generalized differential operator on the real line is defined by means of a limiting process. These generalized derivatives include, as a special case, the classical derivative and current studies of fractional differential operators. All such operators satisfy properties such as the sum, product/quotient rules, chain rule, etc. We study a Sturm-Liouville eigenvalue problem with generalized derivatives and show that the general case is actually a consequence of standard Sturm-Liouville Theory. As an application of the developments herein we find the general solution of a generalized harmonic oscillator. We also consider the classical problem of a planar motion under a central force and show that the general solution of this problem is still generically an ellipse, and that this result is true independently of the choice of the generalized derivatives being used modulo a time shift. The previous result on the generic nature of phase plane orbits is extended to the classical gravitational n-body problem of Newton to show that the global nature of these orbits is independent of the choice of the generalized derivatives being used in defining the force law (modulo a time shift). Finally, restricting the generalized derivatives to a special class of fractional derivatives, we consider the question of motion under gravity with and without resistance and arrive at a new notion of time that depends on the fractional parameter. The results herein are meant to clarify and extend many known results in the literature and intended to show the limitations and use of generalized derivatives and corresponding fractional derivatives.
We analyze the relation of the notion of a pluri-Lagrangian system, which recently emerged in the theory of integrable systems, to the classical notion of variational symmetry, due to E. Noether. We treat classical mechanical systems and show that, for any Lagrangian system with $m$ commuting variational symmetries, one can construct a pluri-Lagrangian 1-form in the $(m+1)$-dimensional time, whose multi-time Euler-Lagrange equations coincide with the original system supplied with $m$ commuting evolutionary flows corresponding to the variational symmetries. We also give a Hamiltonian counterpart of this construction, leading, for any system of commuting Hamiltonian flows, to a pluri-Lagrangian 1-form with coefficients depending on functions in the phase space.
The dynamics of any classical-mechanics system can be formulated in the reparametrization-invariant (RI) form (that is we use the parametric representation for trajectories, ${bf x}={bf x}(tau)$, $t=t(tau)$ instead of ${bf x}={bf x}(t)$). In this pedagogical note we discuss what the quantization rules look like for the RI formulation of mechanics. We point out that in this case some of the rules acquire an intuitively clearer form. Hence the formulation could be an alternative starting point for teaching the basic principles of quantum mechanics. The advantages can be resumed as follows. a) In RI formulation both the temporal and the spatial coordinates are subject to quantization. b) The canonical Hamiltonian of RI formulation is proportional to the quantity $tilde H=p_t+H$, where $H$ is the Hamiltonian of the initial formulation. Due to the reparametrization invariance, the quantity $tilde H$ vanishes for any solution, $tilde H=0$. So the corresponding quantum-mechanical operator annihilates the wave function, $hat{tilde H}Psi=0$, which is precisely the Schrodinger equation $ihbarpartial_tPsi=hat HPsi$. As an illustration, we discuss quantum mechanics of the relativistic particle.
318 - Cesare Tronci 2018
This paper presents the momentum map structures which emerge in the dynamics of mixed states. Both quantum and classical mechanics are shown to possess analogous momentum map pairs. In the quantum setting, the right leg of the pair identifies the Berry curvature, while its left leg is shown to lead to more general realizations of the density operator which have recently appeared in quantum molecular dynamics. Finally, the paper shows how alternative representations of both the density matrix and the classical density are equivariant momentum maps generating new Clebsch representations for both quantum and classical dynamics. Uhlmanns density matrix and Koopman-von Neumann wavefunctions are shown to be special cases of this construction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا