Do you want to publish a course? Click here

Decoherence and noise in open quantum system dynamics

87   0   0.0 ( 0 )
 Added by Bassano Vacchini
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the description of quantum noise within the framework of the standard Copenhagen interpretation of quantum mechanics applied to a composite system environment setting. Averaging over the environmental degrees of freedom leads to a stochastic quantum dynamics, described by equations complying with the constraints arising from the statistical structure of quantum mechanics. Simple examples are considered in the framework of open system dynamics described within a master equation approach, pointing in particular to the appearance of the phenomenon of decoherence and to the relevance of quantum correlation functions of the environment in the determination of the action of quantum noise.



rate research

Read More

125 - Bassano Vacchini 2019
We briefly examine recent developments in the field of open quantum system theory, devoted to the introduction of a satisfactory notion of memory for a quantum dynamics. In particular, we will consider a possible formalization of the notion of non-Markovian dynamics, as well as the construction of quantum evolution equations featuring a memory kernel. Connections will be drawn to the corresponding notions in the framework of classical stochastic processes, thus pointing to the key differences between a quantum and classical formalization of the notion of memory effects.
We develop a theory to describe dynamics of a non-stationary open quantum system interacting with a hybrid environment, which includes high-frequency and low-frequency noise components. One part of the system-bath interaction is treated in a perturbative manner, whereas the other part is considered exactly. This approach allows us to derive a set of master equations where the relaxation rates are expressed as convolutions of the Bloch-Redfield and Marcus formulas. Our theory enables analysis of systems that have extremely small energy gaps in the presence of a realistic environment. As an illustration, we apply the theory to the 16-qubit quantum annealing problem with dangling qubits and show good agreement with experimental results.
We investigate the link between information and thermodynamics embodied by Landauers principle in the open dynamics of a multipartite quantum system. Such irreversible dynamics is described in terms of a collisional model with a finite temperature reservoir. We demonstrate that Landauers principle holds, for such a configuration, in a form that involves the flow of heat dissipated into the environment and the rate of change of the entropy of the system. Quite remarkably, such a principle for {it heat and entropy power} can be explicitly linked to the rate of creation of correlations among the elements of the multipartite system and, in turn, the non-Markovian nature of their reduced evolution. Such features are illustrated in two exemplary cases.
We consider a multipartite system consisting of two noninteracting qubits each embedded in a single-mode leaky cavity, in turn connected to an external bosonic reservoir. Initially, we take the two qubits in an entangled state while the cavities and the reservoirs have zero photons. We investigate, in this six-partite quantum system, the transfer of quantum discord from the qubits to the cavities and reservoirs. We show that this transfer occurs also when the cavities are not entangled. Moreover, we discuss how quantum discord can be extracted from the cavities and transferred to distant systems by traveling leaking photons, using the input-output theory.
We introduce a new dynamical picture, referred to as correlation picture, which connects a correlated state to its uncorrelated counterpart. Using this picture allows us to derive an exact dynamical equation for a general open-system dynamics with system--environment correlations included. This exact dynamics is in the form of a Lindblad-like equation even in the presence of initial system-environment correlations. For explicit calculations, we also develop a weak-correlation expansion formalism that allows us to perform systematic perturbative approximations. This expansion provides approximate master equations which can feature advantages over existing weak-coupling techniques. As a special case, we derive a Markovian master equation, which is different from existing approaches. We compare our equations with corresponding standard weak-coupling equations by two examples, where our correlation picture formalism is more accurate, or at least as accurate as weak-coupling equations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا