No Arabic abstract
We introduce a new dynamical picture, referred to as correlation picture, which connects a correlated state to its uncorrelated counterpart. Using this picture allows us to derive an exact dynamical equation for a general open-system dynamics with system--environment correlations included. This exact dynamics is in the form of a Lindblad-like equation even in the presence of initial system-environment correlations. For explicit calculations, we also develop a weak-correlation expansion formalism that allows us to perform systematic perturbative approximations. This expansion provides approximate master equations which can feature advantages over existing weak-coupling techniques. As a special case, we derive a Markovian master equation, which is different from existing approaches. We compare our equations with corresponding standard weak-coupling equations by two examples, where our correlation picture formalism is more accurate, or at least as accurate as weak-coupling equations.
We find the time evolution of the system of two non-interacting unstable particles, distinguishable as well as identical ones, in arbitrary reference frame having only the Kraus operators governing the evolution of its components in the rest frame. We than calculate in the rigorous way Einstein-Podolsky-Rosen quantum correlation functions for K0-K0 system in the singlet state taking into account CP-violation and decoherence and show that the results are exactly the same despite the fact we treat kaons as distinguishable or identical particles which means that the statistics of the particles plays no role, at least in considered cases.
We briefly examine recent developments in the field of open quantum system theory, devoted to the introduction of a satisfactory notion of memory for a quantum dynamics. In particular, we will consider a possible formalization of the notion of non-Markovian dynamics, as well as the construction of quantum evolution equations featuring a memory kernel. Connections will be drawn to the corresponding notions in the framework of classical stochastic processes, thus pointing to the key differences between a quantum and classical formalization of the notion of memory effects.
Understanding system-bath correlations in open quantum systems is essential for various quantum information and technology applications. Derivations of most master equations (MEs) for the dynamics of open systems require approximations that mask dependence of the system dynamics on correlations, since the MEs focus on reduced system dynamics. Here we demonstrate that the most common MEs indeed contain hidden information about explicit system-environment correlation. We unfold these correlations by recasting the MEs into a universal form in which the system-bath correlation operator appears. The equations include the Lindblad, Redfield, second-order time-convolutionless, second-order Nakajima-Zwanzig, and second-order universal Lindblad-like cases. We further illustrate our results in an example, which implies that the second-order universal Lindblad-like equation captures correlation more accurately than other standard techniques.
We consider an Ehrenfest approximation for a particle in a double-well potential in the presence of an external environment schematized as a finite resource heat bath. This allows us to explore how the limitations in the applicability of Ehrenfest dynamics to nonlinear systems are modified in an open system setting. Within this framework, we have identified an environment-induced spontaneous symmetry breaking mechanism, and we argue that the Ehrenfest approximation becomes increasingly valid in the limit of strong coupling to the external reservoir, either in the form of increasing number of oscillators or increasing temperature. The analysis also suggests a rather intuitive picture for the general phenomenon of quantum tunneling and its interplay with classical thermal activation processes, which may be of relevance in physical chemistry, ultracold atom physics, and fast-switching dynamics such as in superconducting digital electronics.
We derive a quantum master equation to treat quantum systems interacting with multiple reservoirs. The formalism is used to investigate atomic transport across a variety of lattice configurations. We demonstrate how the behavior of an electronic diode, a field-effect transistor, and a bipolar junction transistor can be realized with neutral, ultracold atoms trapped in optical lattices. An analysis of the current fluctuations is provided for the case of the atomtronic diode. Finally, we show that it is possible to demonstrate AND logic gate behavior in an optical lattice.