Do you want to publish a course? Click here

Landauers principle in multipartite open quantum system dynamics

196   0   0.0 ( 0 )
 Added by Mauro Paternostro
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the link between information and thermodynamics embodied by Landauers principle in the open dynamics of a multipartite quantum system. Such irreversible dynamics is described in terms of a collisional model with a finite temperature reservoir. We demonstrate that Landauers principle holds, for such a configuration, in a form that involves the flow of heat dissipated into the environment and the rate of change of the entropy of the system. Quite remarkably, such a principle for {it heat and entropy power} can be explicitly linked to the rate of creation of correlations among the elements of the multipartite system and, in turn, the non-Markovian nature of their reduced evolution. Such features are illustrated in two exemplary cases.



rate research

Read More

Elucidating the energy transfer between a quantum system and a reservoir is a central issue in quantum non-equilibrium thermodynamics, which could provide novel tools to engineer quantum-enhanced heat engines. The lack of information on the reservoir inherently limits the practical insight that can be gained on the exchange process of open quantum systems. Here, we investigate the energy transfer for an open quantum system in the framework of quantum fluctuation relations. As a novel toolbox, we employ a nitrogen-vacancy center spin qubit in diamond, subject to repeated quantum projective measurements and a tunable dissipation channel. In the presence of energy fluctuations originated by dissipation and quantum projective measurements, the experimental results, supplemented by numerical simulations, show the validity of the energy exchange fluctuation relation, where the energy scale factor encodes missing reservoir information in the system out-of-equilibrium steady state properties. This result is complemented by a theoretical argument showing that, also for an open three-level quantum system, the existence of an out-of-equilibrium steady state dictates a unique time-independent value of the energy scale factor for which the fluctuation relation is verified. Our findings pave the way to the investigation of energy exchange mechanisms in arbitrary open quantum systems.
We investigate the influence of a weakly nonlinear Josephson bath consisting of a chain of Josephson junctions on the dynamics of a small quantum system (LC oscillator). Focusing on the regime where the charging energy is the largest energy scale, we perturbatively calculate the correlation function of the Josephson bath to the leading order in the Josephson energy divided by the charging energy while keeping the cosine potential exactly. When the variation of the charging energy along the chain ensures fast decay of the bath correlation function, the dynamics of the LC oscillator that is weakly and capacitively coupled to the Josephson bath can be solved through the Markovian master equation. We establish a duality relation for the Josephson bath between the regimes of large charging and Josephson energies respectively. The results can be applied to cases where the charging energy either is nonuniformly engineered or disordered in the chain. Furthermore, we find that the Josephson bath may become non-Markovian when the temperature is increased beyond the zero-temperature limit in that the bath correlation function gets shifted by a constant and does not decay with time.
We consider a multipartite system consisting of two noninteracting qubits each embedded in a single-mode leaky cavity, in turn connected to an external bosonic reservoir. Initially, we take the two qubits in an entangled state while the cavities and the reservoirs have zero photons. We investigate, in this six-partite quantum system, the transfer of quantum discord from the qubits to the cavities and reservoirs. We show that this transfer occurs also when the cavities are not entangled. Moreover, we discuss how quantum discord can be extracted from the cavities and transferred to distant systems by traveling leaking photons, using the input-output theory.
As the dimensions of physical systems approach the nanoscale, the laws of thermodynamics must be reconsidered due to the increased importance of fluctuations and quantum effects. While the statistical mechanics of small classical systems is relatively well understood, the quantum case still poses challenges. Here we set up a formalism that allows to calculate the full probability distribution of energy exchanges between a periodically driven quantum system and a thermalized heat reservoir. The formalism combines Floquet theory with a generalized master equation approach. For a driven two-level system and in the long-time limit, we obtain a universal expression for the distribution, providing clear physical insight into the exchanged energy quanta. We illustrate our approach in two analytically solvable cases and discuss the differences in the corresponding distributions. Our predictions could be directly tested in a variety of systems, including optical cavities and solid-state devices.
We introduce a simple single-system game inspired by the Clauser-Horne-Shimony-Holt (CHSH) game. For qubit systems subjected to unitary gates and projective measurements, we prove that any strategy in our game can be mapped to a strategy in the CHSH game, which implies that Tsirelsons bound also holds in our setting. More generally, we show that the optimal success probability depends on the reversible or irreversible character of the gates, the quantum or classical nature of the system and the system dimension. We analyse the bounds obtained in light of Landauers principle, showing the entropic costs of the erasure associated with the game. This shows a connection between the reversibility in fundamental operations embodied by Landauers principle and Tsirelsons bound, that arises from the restricted physics of a unitarily-evolving single-qubit system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا