No Arabic abstract
I provide a simple estimation for the number of macrophages in a tissue, arising from the hypothesis that they should keep infections below a certain threshold, above which neutrophils are recruited from blood circulation. The estimation reads Nm=a Ncel^{alpha}/Nmax, where a is a numerical coefficient, the exponent {alpha} is near 2/3, and Nmax is the maximal number of pathogens a macrophage may engulf in the time interval, tr, between pathogen replications.
Gene expression data for a set of 12 localizations from The Cancer Genome Atlas are processed in order to evaluate an entropy-like magnitude allowing the characterization of tumors and comparison with the corresponding normal tissues. The comparison indicates that the number of available states in gene expression space is much greater for tumors than for normal tissues and points out to a scaling relation between the fraction of available states and the overlapping between the tumor and normal sample clouds.
Cells forming various epithelial tissues have a strikingly universal distribution for the number of their edges. It is generally assumed that this topological feature is predefined by the statistics of individual cell divisions in growing tissue but existing theoretical models are unable to predict the observed distribution. Here we show experimentally, as well as in simulations, that the probability of cellular division increases exponentially with the number of edges of the dividing cell and show analytically that this is responsible for the observed shape of cell-edge distribution.
Self-regulation of living tissue as an example of self-organization phenomena in active fractal systems of biological, ecological, and social nature is under consideration. The characteristic feature of these systems is the absence of any governing center and, thereby, their self-regulation is based on a cooperative interaction of all the elements. The paper develops a mathematical theory of a vascular network response to local effects on scales of individual units of peripheral circulation. First, it formulates a model for the self-processing of information about the cellular tissue state and cooperative interaction of blood vessels governing redistribution of blood flow over the vascular network. Mass conservation (conservation of blood flow as well as transported biochemical compounds) plays the key role in implementing these processes. The vascular network is considered to be of the tree form and the blood vessels are assumed to respond individually to an activator in blood flowing though them. Second, the constructed governing equations are analyzed numerically. It is shown that at the first approximation the blood perfusion rate depends locally on the activator concentration in the cellular tissue, which is due to the hierarchical structure of the vascular network. Then the distinction between the reaction threshold of individual vessels and that of the vascular network as a whole is demonstrated. In addition, the nonlocal component of the dependence of the blood perfusion rate on the activator concentration is found to change its form as the activator concentration increases.
The growth of several biological tissues is known to be controlled in part by local geometrical features, such as the curvature of the tissue interface. This control leads to changes in tissue shape that in turn can affect the tissues evolution. Understanding the cellular basis of this control is highly significant for bioscaffold tissue engineering, the evolution of bone microarchitecture, wound healing, and tumour growth. While previous models have proposed geometrical relationships between tissue growth and curvature, the role of cell density and cell vigor remains poorly understood. We propose a cell-based mathematical model of tissue growth to investigate the systematic influence of curvature on the collective crowding or spreading of tissue-synthesising cells induced by changes in local tissue surface area during the motion of the interface. Depending on the strength of diffusive damping, the model exhibits complex growth patterns such as undulating motion, efficient smoothing of irregularities, and the generation of cusps. We compare this model with in-vitro experiments of tissue deposition in bioscaffolds of different geometries. By accounting for the depletion of active cells, the model is able to capture both smoothing of initial substrate geometry and tissue deposition slowdown as observed experimentally.
Can three-dimensional, microvasculature networks still ensure blood supply if individual links fail? We address this question in the sinusoidal network, a plexus-like microvasculature network, which transports nutrient-rich blood to every hepatocyte in liver tissue, by building on recent advances in high-resolution imaging and digital reconstruction of adult mice liver tissue. We find that the topology of the three-dimensional sinusoidal network reflects its two design requirements of a space-filling network that connects all hepatocytes, while using shortest transport routes: sinusoidal networks are sub-graphs of the Delaunay graph of their set of branching points, and also contain the corresponding minimum spanning tree, both to good approximation. To overcome the spatial limitations of experimental samples and generate arbitrarily-sized networks, we developed a network generation algorithm that reproduces the statistical features of 0.3-mm-sized samples of sinusoidal networks, using multi-objective optimization for node degree and edge length distribution. Nematic order in these simulated networks implies anisotropic transport properties, characterized by an empirical linear relation between a nematic order parameter and the anisotropy of the permeability tensor. Under the assumption that all sinusoid tubes have a constant and equal flow resistance, we predict that the distribution of currents in the network is very inhomogeneous, with a small number of edges carrying a substantial part of the flow. We quantify network resilience in terms of a permeability-at-risk, i.e. permeability as function of the fraction of removed edges. We find that sinusoidal networks are resilient to random removal of edges, but vulnerable to the removal of high-current edges. Our findings suggest the existence of a mechanism counteracting flow inhomogeneity to balance metabolic load on the liver.