Do you want to publish a course? Click here

Resilience of three-dimensional sinusoidal networks in liver tissue

119   0   0.0 ( 0 )
 Publication date 2019
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Can three-dimensional, microvasculature networks still ensure blood supply if individual links fail? We address this question in the sinusoidal network, a plexus-like microvasculature network, which transports nutrient-rich blood to every hepatocyte in liver tissue, by building on recent advances in high-resolution imaging and digital reconstruction of adult mice liver tissue. We find that the topology of the three-dimensional sinusoidal network reflects its two design requirements of a space-filling network that connects all hepatocytes, while using shortest transport routes: sinusoidal networks are sub-graphs of the Delaunay graph of their set of branching points, and also contain the corresponding minimum spanning tree, both to good approximation. To overcome the spatial limitations of experimental samples and generate arbitrarily-sized networks, we developed a network generation algorithm that reproduces the statistical features of 0.3-mm-sized samples of sinusoidal networks, using multi-objective optimization for node degree and edge length distribution. Nematic order in these simulated networks implies anisotropic transport properties, characterized by an empirical linear relation between a nematic order parameter and the anisotropy of the permeability tensor. Under the assumption that all sinusoid tubes have a constant and equal flow resistance, we predict that the distribution of currents in the network is very inhomogeneous, with a small number of edges carrying a substantial part of the flow. We quantify network resilience in terms of a permeability-at-risk, i.e. permeability as function of the fraction of removed edges. We find that sinusoidal networks are resilient to random removal of edges, but vulnerable to the removal of high-current edges. Our findings suggest the existence of a mechanism counteracting flow inhomogeneity to balance metabolic load on the liver.



rate research

Read More

The primary exchange units in the human placenta are terminal villi, in which fetal capillary networks are surrounded by a thin layer of villous tissue, separating fetal from maternal blood. To understand how the complex spatial structure of villi influences their function, we use an image-based theoretical model to study the effect of tissue metabolism on the transport of solutes from maternal blood into the fetal circulation. For solute that is taken up under first-order kinetics, we show that the transition between flow-limited and diffusion-limited transport depends on two new dimensionless parameters defined in terms of key geometric quantities, with strong solute uptake promoting flow-limited transport conditions. We present a simple algebraic approximation for solute uptake rate as a function of flow conditions, metabolic rate and villous geometry. For oxygen, accounting for nonlinear kinetics using physiological parameter values, our model predicts that villous metabolism does not significantly impact oxygen transfer to fetal blood, although the partitioning of fluxes between the villous tissue and the capillary network depends strongly on the flow regime.
Cells forming various epithelial tissues have a strikingly universal distribution for the number of their edges. It is generally assumed that this topological feature is predefined by the statistics of individual cell divisions in growing tissue but existing theoretical models are unable to predict the observed distribution. Here we show experimentally, as well as in simulations, that the probability of cellular division increases exponentially with the number of edges of the dividing cell and show analytically that this is responsible for the observed shape of cell-edge distribution.
The growth of several biological tissues is known to be controlled in part by local geometrical features, such as the curvature of the tissue interface. This control leads to changes in tissue shape that in turn can affect the tissues evolution. Understanding the cellular basis of this control is highly significant for bioscaffold tissue engineering, the evolution of bone microarchitecture, wound healing, and tumour growth. While previous models have proposed geometrical relationships between tissue growth and curvature, the role of cell density and cell vigor remains poorly understood. We propose a cell-based mathematical model of tissue growth to investigate the systematic influence of curvature on the collective crowding or spreading of tissue-synthesising cells induced by changes in local tissue surface area during the motion of the interface. Depending on the strength of diffusive damping, the model exhibits complex growth patterns such as undulating motion, efficient smoothing of irregularities, and the generation of cusps. We compare this model with in-vitro experiments of tissue deposition in bioscaffolds of different geometries. By accounting for the depletion of active cells, the model is able to capture both smoothing of initial substrate geometry and tissue deposition slowdown as observed experimentally.
100 - Mao-Xiang Wang , Arthur Lander , 2021
Identifying the mechanism of intercellular feedback regulation is critical for the basic understanding of tissue growth control in organisms. In this paper, we analyze a tissue growth model consisting of a single lineage of two cell types regulated by negative feedback signalling molecules that undergo spatial diffusion. By deriving the fixed points for the uniform steady states and carrying out linear stability analysis, phase diagrams are obtained analytically for arbitrary parameters of the model. Two different generic growth modes are found: blow-up growth and final-state controlled growth which are governed by the non-trivial fixed point and the trivial fixed point respectively, and can be sensitively switched by varying the negative feedback regulation on the proliferation of the stem cells. Analytic expressions for the characteristic time scales for these two growth modes are also derived. Remarkably, the trivial and non-trivial uniform steady states can coexist and a sharp transition occurs in the bistable regime as the relevant parameters are varied. Furthermore, the bi-stable growth properties allows for the external control to switch between these two growth modes. In addition, the condition for an early accelerated growth followed by a retarded growth can be derived. These analytical results are further verified by numerical simulations and provide insights on the growth behavior of the tissue. Our results are also discussed in the light of possible realistic biological experiments and tissue growth control strategy. Furthermore, by external feedback control of the concentration of regulatory molecules, it is possible to achieve a desired growth mode, as demonstrated with an analysis of boosted growth, catch-up growth and the design for the target of a linear growth dynamic.
296 - Pascal R. Buenzli 2015
Several biological tissues undergo changes in their geometry and in their bulk material properties by modelling and remodelling processes. Modelling synthesises tissue in some regions and removes tissue in others. Remodelling overwrites old tissue material properties with newly formed, immature tissue properties. As a result, tissues are made up of different patches, i.e., adjacent tissue regions of different ages and different material properties, within evolving boundaries. In this paper, generalised equations governing the spatio-temporal evolution of such tissues are developed within the continuum model. These equations take into account nonconservative, discontinuous surface mass balance due to creation and destruction of material at moving interfaces, and bulk balance due to tissue maturation. These equations make it possible to model patchy tissue states and their evolution without explicitly maintaining a record of when/where resorption and formation processes occurred. The time evolution of spatially averaged tissue properties is derived systematically by integration. These spatially-averaged equations cannot be written in closed form as they retain traces that tissue destruction is localised at tissue boundaries. The formalism developed in this paper is applied to bone tissues, which exhibit strong material heterogeneities due to their slow mineralisation and remodelling processes. Evolution equations are proposed in particular for osteocyte density and bone mineral density. Effective average equations for bone mineral density (BMD) and tissue mineral density (TMD) are derived using a mean-field approximation. The error made by this approximation when remodelling patchy tissue is investigated. The specific time signatures of BMD or TMD during remodelling events may provide a way to detect these events occurring at lower, unseen spatial resolutions from microCT scans.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا