No Arabic abstract
Cells forming various epithelial tissues have a strikingly universal distribution for the number of their edges. It is generally assumed that this topological feature is predefined by the statistics of individual cell divisions in growing tissue but existing theoretical models are unable to predict the observed distribution. Here we show experimentally, as well as in simulations, that the probability of cellular division increases exponentially with the number of edges of the dividing cell and show analytically that this is responsible for the observed shape of cell-edge distribution.
During morphogenesis, the shape of a tissue emerges from collective cellular behaviors, which are in part regulated by mechanical and biochemical interactions between cells. Quantification of force and stress is therefore necessary to analyze the mechanisms controlling tissue morphogenesis. Recently, a mechanical measurement method based on force inference from cell shapes and connectivity has been developed. It is non-invasive, and can provide space-time maps of force and stress within an epithelial tissue, up to prefactors. We previously performed a comparative study of three force-inference methods, which differ in their approach of treating indefiniteness in an inverse problem between cell shapes and forces. In the present study, to further validate and compare the three force inference methods, we tested their robustness by measuring temporal fluctuation of estimated forces. Quantitative data of cell-level dynamics in a developing tissue suggests that variation of forces and stress will remain small within a short period of time ($sim$minutes). Here, we showed that cell-junction tensions and global stress inferred by the Bayesian force inference method varied less with time than those inferred by the method that estimates only tension. In contrast, the amplitude of temporal fluctuations of estimated cell pressures differs less between different methods. Altogether, the present study strengthens the validity and robustness of the Bayesian force-inference method.
A continuum model of epithelial tissue mechanics was formulated using cellular-level mechanical ingredients and cell morphogenetic processes, including cellular shape changes and cellular rearrangements. This model can include finite deformation, and incorporates stress and deformation tensors, which can be compared with experimental data. Using this model, we elucidated dynamical behavior underlying passive relaxation, active contraction-elongation, and tissue shear flow. This study provides an integrated scheme for the understanding of the mechanisms that are involved in orchestrating the morphogenetic processes in individual cells, in order to achieve epithelial tissue morphogenesis.
Can three-dimensional, microvasculature networks still ensure blood supply if individual links fail? We address this question in the sinusoidal network, a plexus-like microvasculature network, which transports nutrient-rich blood to every hepatocyte in liver tissue, by building on recent advances in high-resolution imaging and digital reconstruction of adult mice liver tissue. We find that the topology of the three-dimensional sinusoidal network reflects its two design requirements of a space-filling network that connects all hepatocytes, while using shortest transport routes: sinusoidal networks are sub-graphs of the Delaunay graph of their set of branching points, and also contain the corresponding minimum spanning tree, both to good approximation. To overcome the spatial limitations of experimental samples and generate arbitrarily-sized networks, we developed a network generation algorithm that reproduces the statistical features of 0.3-mm-sized samples of sinusoidal networks, using multi-objective optimization for node degree and edge length distribution. Nematic order in these simulated networks implies anisotropic transport properties, characterized by an empirical linear relation between a nematic order parameter and the anisotropy of the permeability tensor. Under the assumption that all sinusoid tubes have a constant and equal flow resistance, we predict that the distribution of currents in the network is very inhomogeneous, with a small number of edges carrying a substantial part of the flow. We quantify network resilience in terms of a permeability-at-risk, i.e. permeability as function of the fraction of removed edges. We find that sinusoidal networks are resilient to random removal of edges, but vulnerable to the removal of high-current edges. Our findings suggest the existence of a mechanism counteracting flow inhomogeneity to balance metabolic load on the liver.
The growth of several biological tissues is known to be controlled in part by local geometrical features, such as the curvature of the tissue interface. This control leads to changes in tissue shape that in turn can affect the tissues evolution. Understanding the cellular basis of this control is highly significant for bioscaffold tissue engineering, the evolution of bone microarchitecture, wound healing, and tumour growth. While previous models have proposed geometrical relationships between tissue growth and curvature, the role of cell density and cell vigor remains poorly understood. We propose a cell-based mathematical model of tissue growth to investigate the systematic influence of curvature on the collective crowding or spreading of tissue-synthesising cells induced by changes in local tissue surface area during the motion of the interface. Depending on the strength of diffusive damping, the model exhibits complex growth patterns such as undulating motion, efficient smoothing of irregularities, and the generation of cusps. We compare this model with in-vitro experiments of tissue deposition in bioscaffolds of different geometries. By accounting for the depletion of active cells, the model is able to capture both smoothing of initial substrate geometry and tissue deposition slowdown as observed experimentally.
The primary exchange units in the human placenta are terminal villi, in which fetal capillary networks are surrounded by a thin layer of villous tissue, separating fetal from maternal blood. To understand how the complex spatial structure of villi influences their function, we use an image-based theoretical model to study the effect of tissue metabolism on the transport of solutes from maternal blood into the fetal circulation. For solute that is taken up under first-order kinetics, we show that the transition between flow-limited and diffusion-limited transport depends on two new dimensionless parameters defined in terms of key geometric quantities, with strong solute uptake promoting flow-limited transport conditions. We present a simple algebraic approximation for solute uptake rate as a function of flow conditions, metabolic rate and villous geometry. For oxygen, accounting for nonlinear kinetics using physiological parameter values, our model predicts that villous metabolism does not significantly impact oxygen transfer to fetal blood, although the partitioning of fluxes between the villous tissue and the capillary network depends strongly on the flow regime.