No Arabic abstract
Recently [Phys. Rev. B 91, 125433 (2015)] we derived a general formula for the time-dependent quantum electron current through a molecular junction subject to an arbitrary time-dependent bias within the Wide Band Limit Approximation (WBLA) and assuming a single particle Hamiltonian. Here we present an efficient numerical scheme for calculating the current and particle number. Using the Pade expansion of the Fermi function, it is shown that all frequency integrals occurring in the general formula for the current can be removed analytically. Furthermore, when the bias in the reservoirs is assumed to be sinusoidal it is possible to manipulate the general formula into a form containing only summations over special functions. To illustrate the method, we consider electron transport through a one-dimensional molecular wire coupled to two leads subject to out-of-phase biases. We also investigate finite size effects in the current response and particle number that results from the switch-on of such a bias.
Working within the Nonequilibrium Greens Function (NEGF) formalism, a formula for the two-time current correlation function is derived for the case of transport through a nanojunction in response to an arbitrary time-dependent bias. The one-particle Hamiltonian and the Wide Band Limit Approximation (WBLA) are assumed, enabling us to extract all necessary Greens functions and self energies for the system, extending the analytic work presented previously [Ridley et al. Phys. Rev. B (2015)]. We show that our new expression for the two-time correlation function generalises the Buttiker theory of shot and thermal noise on the current through a nanojunction to the time-dependent bias case including the transient regime following the switch-on. Transient terms in the correlation function arise from an initial state that does not assume (as is usually done) that the system is initially uncoupled, i.e. our approach is partition-free. We show that when the bias loses its time-dependence, the long time-limit of the current correlation function depends on the time difference only, as in this case an ideal steady state is reached. This enables derivation of known results for the single frequency power spectrum and for the zero frequency limit of this power spectrum. In addition, we present a technique which for the first time facilitates fast calculations of the transient quantum noise, valid for arbitrary temperature, time and voltage scales. We apply this to the quantum dot and molecular wire systems for both DC and AC biases, and find a novel signature of the traversal time for electrons crossing the wire in the time-dependent cross-lead current correlations.
We apply the Nonequilibrium Greens Function (NEGF) formalism to the problem of a multi-terminal nanojunction subject to an arbitrary time-dependent bias. In particular, we show that taking a generic one-particle system Hamiltonian within the wide band limit approximation (WBLA), it is possible to obtain a closed analytical expression for the current in each lead. Our formula reduces to the well-known result of Jauho et. al. [doi:10.1103/PhysRevB.50.5528] in the limit where the switch-on time is taken to the remote past, and to the result of Tuovinen et. al. [doi:10.1088/1742-6596/427/1/012014] when the bias is maintained at a constant value after the switch-on. As we use a partition-free approach, our formula contains both the long-time current and transient effects due to the sudden switch-on of the bias. Numerical calculations performed for the simple case of a single-level quantum dot coupled to two leads are performed for a sinusoidally-varying bias. At certain frequencies of the driving bias, we observe `ringing oscillations of the current, whose dependence on the dot level, level width, oscillation amplitude and temperature is also investigated.
The generation of spin current and spin polarization in 2DEG Rashba system is considered, in which the spin-orbital coupling (SOC) is modulated by an ac gate voltage. By using non-Abelian gauge field method, we show the presence of an additional electric field. This field induces a spin current generated even in the presence of impurity scattering and is related to the time-modulation of the Rashba SOC strength. In addition, the spin precession can be controlled by modulating the modulation frequency of the Rashba SOC strength. It is shown that at high modulation frequency, the precessional motion is suppressed so that the electron spin polarization can be sustained in the 2DEG
The influence of contacts on linear transport through a molecular wire attached to mesoscopic tubule leads is studied. It is shown that low dimensional leads, such as carbon nanotubes, in contrast to bulky electrodes, strongly affect transport properties. By focusing on the specificity of the lead-wire contact, we show, in a fully analytical treatment, that the geometry of this hybrid system supports a mechanism of channel selection and a sum rule, which is a distinctive hallmark of the mesoscopic nature of the electrodes.
We investigate several definitions of the time-dependent spectral function $A(omega,t)$ of the Anderson impurity model following a quench and within the time-dependent numerical renormalization group method. In terms of the two-time retarded Green function $G^r(t_1,t_2)$, the definitions differ in the choice of the time variable $t$ with respect to $t_1$ and/or $t_2$. In a previous study [Nghiem {it et al.} Phys. Rev. Lett. 119, 156601 (2017)], we investigated the spectral function, obtained from the Fourier transform of ${rm Im}[G^r(t_1,t_2)]$ w.r.t. the time difference $t=t_1-t_2$, with $t=t_2$. Here, we derivie expressions for the retarded Green function for the choices $t=t_1$ and the average time $t=(t_1+t_2)/2$, within the TDNRG approach. We compare and contrast the resulting $A(omega,t)$ for the different choices of time reference. Expressions for the lesser, greater and advanced Green functions are also derived within TDNRG for all choices of time reference. The average time lesser Green function $G^<(omega,t)$ is particularly interesting, as it determines the time-dependent occupied density of states $N(omega,t)=G^<(omega,t)/(2pi i)$, a quantity that determines the photoemission current in time-resolved pump-probe photoemission spectroscopy. We present calculations for $N(omega,t)$ for the Anderson model following a quench, and discuss the resulting time evolution of the spectral features, such as the Kondo resonance and high-energy peaks. We also discuss the issue of thermalization at long times for $N(omega,t)$. Finally, we use the results for $N(omega,t)$ to calculate the time-resolved photoemission current for the Anderson model following a quench (acting as the pump) and study the different behaviors that can be observed for different resolution times of a Gaussian probe pulse.