No Arabic abstract
The influence of contacts on linear transport through a molecular wire attached to mesoscopic tubule leads is studied. It is shown that low dimensional leads, such as carbon nanotubes, in contrast to bulky electrodes, strongly affect transport properties. By focusing on the specificity of the lead-wire contact, we show, in a fully analytical treatment, that the geometry of this hybrid system supports a mechanism of channel selection and a sum rule, which is a distinctive hallmark of the mesoscopic nature of the electrodes.
Analytic results for the conductance of a molecular wire attached to mesoscopic tubule leads are obtained. They permit to study linear transport in presence of low dimensional leads in the whole range of parameters. In particular contact effects can be addressed in detail. By focusing on the specificity of the lead-wire contact, we show that the geometry of this hybrid system supports a mechanism of channel selection, which is a distinctive hallmark of the mesoscopic nature of the electrodes.
Molecular electronic devices are the upmost destiny of the miniaturization trend of electronic components. Although not yet reproducible on large scale, molecular devices are since recently subject of intense studies both experimentally and theoretically, which agree in pointing out the extreme sensitivity of such devices on the nature and quality of the contacts. This chapter intends to provide a general theoretical framework for modelling electronic transport at the molecular scale by describing the implementation of a hybrid method based on Green function theory and density functional algorithms. In order to show the presence of contact-dependent features in the molecular conductance, we discuss three archetypal molecular devices, which are intended to focus on the importance of the different sub-parts of a molecular two-terminal setup.
Superconducting wires with broken time-reversal and spin-rotational symmetries can exhibit two distinct topological gapped phases and host bound Majorana states at the phase boundaries. When the wire is tuned to the transition between these two phases and the gap is closed, Majorana states become delocalized leading to a peculiar critical state of the system. We study transport properties of this critical state as a function of the length $L$ of a disordered multichannel wire. Applying a non-linear supersymmetric sigma model of symmetry class D with two replicas, we identify the average conductance, its variance and the third cumulant in the whole range of $L$ from the Ohmic limit of short wires to the regime of a broad conductance distribution when $L$ exceeds the correlation length of the system. In addition, we calculate the average shot noise power and variance of the topological index for arbitrary $L$. The general approach developed in the paper can also be applied to study combined effects of disorder and topology in wires of other symmetries.
It is straightforward to calculate the conductance of a quantum device once all its scattering centers are fully specified. However, to do this in reverse, i.e., to find information about the composition of scatterers in a device from its conductance, is an elusive task. This is particularly more challenging in the presence of disorder. Here we propose a procedure in which valuable compositional information can be extracted from the seemingly noisy spectral conductance of a two-terminal disordered quantum device. In particular, we put forward an inversion methodology that can identify the nature and respective concentration of randomly-distributed impurities by analyzing energy-dependent conductance fingerprints. Results are shown for graphene nanoribbons as a case in point using both tight-binding and density functional theory simulations, indicating that this inversion technique is general, robust and can be employed to extract structural and compositional information of disordered mesoscopic devices from standard conductance measurements.
Yield stress fluids display complex dynamics, in particular when driven into the transient regime between the solid and the flowing state. Inspired by creep experiments on dense amorphous materials, we implement mesocale elasto-plastic descriptions to analyze such transient dynamics in athermal systems. Both our mean-field and space-dependent approaches consistently reproduce the typical experimental strain rate responses to different applied steps in stress. Moreover, they allow us to understand basic processes involved in the strain rate slowing down (creep) and the strain rate acceleration (fluidization) phases. The fluidization time increases in a power-law fashion as the applied external stress approaches a static yield stress. This stress value is related to the stress over-shoot in shear start-up experiments, and it is known to depend on sample preparation and age. By calculating correlations of the accumulated plasticity in the spatially resolved model, we reveal different modes of cooperative motion during the creep dynamics.