Do you want to publish a course? Click here

Dynamical structure factor of one-dimensional Bose gases: experimental signatures of beyond-Luttinger liquid physics

136   0   0.0 ( 0 )
 Added by Nicole Fabbri
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Interactions are known to have dramatic effects on bosonic gases in one dimension (1D). Not only does the ground state transform from a condensate-like state to an effective Fermi sea, but new fundamental excitations, which do not have any higher-dimensional equivalents, are predicted to appear. In this work, we trace these elusive excitations via their effects on the dynamical structure factor of 1D strongly-interacting Bose gases at low temperature. An array of 1D Bose gases is obtained by loading a $^{87}$Rb condensate in a 2D lattice potential. The dynamical structure factor of the system is probed by energy deposition through low-momentum Bragg excitations. The experimental signals are compared to recent theoretical predictions for the dynamical structure factor of the Lieb-Liniger model at $T > 0$. Our results demonstrate that the main contribution to the spectral widths stems from the dynamics of the interaction-induced excitations in the gas, which cannot be described by the Luttinger liquid theory.



rate research

Read More

We experimentally investigate the quantum criticality and Tomonaga-Luttinger liquid (TLL) behavior within one-dimensional (1D) ultracold atomic gases. Based on the measured density profiles at different temperatures, the universal scaling laws of thermodynamic quantities are observed. The quantum critical regime and the relevant crossover temperatures are determined through the double-peak structure of the specific heat. In the TLL regime, we obtain the Luttinger parameter by probing sound propagation. Furthermore, a characteristic power-law behavior emerges in the measured momentum distributions of the 1D ultracold gas, confirming the existence of the TLL.
152 - Bess Fang 2013
We measure the position- and momentum- space breathing dynamics of trapped one-dimensional Bose gases. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas crossover. A comparison with theoretical models taking into account the effect of finite temperature is provided. In momentum space, we report the first observation of a frequency doubling in the quasicondensate regime, corresponding to a self-reflection mechanism. The disappearance of this mechanism through the quasicondensation crossover is mapped out.
In quantum gases with contact repulsion, the distribution of momenta of the atoms typically decays as $sim 1/|p|^4$ at large momentum $p$. Tans relation connects the amplitude of that $1/|p|^4$ tail to the adiabatic derivative of the energy with respect to the gas coupling constant or scattering length. Here it is shown that the relation breaks down in the one-dimensional Bose gas with contact repulsion, for a peculiar class of stationary states. These states exist thanks to the infinite number of conserved quantities in the system, and they are characterized by a rapidity distribution which itself decreases as $1/|p|^4$. In the momentum distribution, that rapidity tail adds to the usual Tan contact term. Remarkably, atom losses, which are ubiquitous in experiments, do produce such peculiar states. The development of the tail of the rapidity distribution originates from the ghost singularity of the wavefunction immediately after each loss event. This phenomenon is discussed for arbitrary interaction strengths, and it is supported by exact calculations in the two asymptotic regimes of infinite and weak repulsion.
The ground-state properties of one-dimensional 3He are studied using quantum Monte Carlo methods. The equation of state is calculated in a wide range of physically relevant densities and is well reproduced by a power-series fit. The Luttinger liquid theory is found to describe the long-range properties of the correlation function. The density dependence of the Luttinger parameter is explicitly found and interestingly it shows a non-monotonic behavior. Depending on the density, the static structure factor can be a smooth function of the momentum or might contain a peak of a finite or infinite height. Although no phase transitions are present in the system, we identify a number of physically different regimes, including an ideal Fermi gas, a Bose-gas, a super-Tonks-Girardeau regime, and a quasi-crystal.
We present a detailed beyond-mean-field analysis of a weakly interacting Bose gas in the crossover from three to low dimensions. We find an analytical solution for the energy and provide a clear qualitative picture of the crossover in the case of a box potential with periodic boundary conditions. We show that the leading contribution of the confinement-induced resonance is of beyond-mean-field order and calculate the leading corrections in the three- and low-dimensional limits. We also characterize the crossover for harmonic potentials in a model system with particularly chosen short- and long-range interactions and show the limitations of the local-density approximation. Our analysis is applicable to Bose-Bose mixtures and gives a starting point for developing the beyond-mean-field theory in inhomogeneous systems with long-range interactions such as dipolar particles or Rydberg-dressed atoms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا