No Arabic abstract
Starting from a three dimensional Hamiltonian, we study the optical properties of ultra-thin topological insulator slabs for which the coupling between Dirac fermions on opposite surfaces results in two degenerated gapped hyperbolic bands. The gap is a threshold for the optical absorption and translates in a peak in the imaginary part of the optical conductivity. An exchange field applied perpendicular to the slab splits the degenerated hyperbolic bands and a double step structure come out in the optical absorption, whereas a double peak structure appears in the imaginary part of the longitudinal optical conductivity. The exchange field breaks time-reversal symmetry and for exchange fields larger than the surfaces coupling gap, the zero frequency Hall conductivity is quantized to $e^2/h$. This result implies large values of the Kerr and Faraday rotation angles. In ultra-thin slabs, the absence of light multiple scattering and bulk conductivity, makes the Kerr and Faradays angles to remain rather large in a wide range of frequencies.
We study the electronic and transport properties of a topological insulator nanowire including selective magnetic doping of its surfaces. We use a model which is appropriate to describe materials like Bi$_2$Se$_3$ within a k.p approximation and consider nanowires with a rectangular geometry. Within this model the magnetic doping at the (111) surfaces induces a Zeeman field which opens a gap at the Dirac cones corresponding to the surface states. For obtaining the transport properties in a two terminal configuration we use a recursive Green function method based on a tight-binding model which is obtained by discretizing the original continuous model. For the case of uniform magnetization of two opposite nanowire (111) surfaces we show that the conductance can switch from a quantized value of $e^2/h$ (when the magnetizations are equal) to a very small value (when they are opposite). We also analyze the case of non-uniform magnetizations in which the Zeeman field on the two opposite surfaces change sign at the middle of the wire. For this case we find that conduction by resonant tunneling through a chiral state bound at the middle of the wire is possible. The resonant level position can be tuned by imposing an Aharonov-Bohm flux through the nanowire cross section.
An overview is given of recent advances in experimental and theoretical understanding of optical properties of ultra-thin crystal structures (graphene, phosphorene, silicene, MoS2, MoSe2 , WS2 , WSe2 , h-AlN, h-BN, fluorographene, graphane). Ultra-thin crystals are atomically-thick layered crystals that have unique properties which differ from their 3D counterpart. Because of the difficulties in the synthesis of few-atom-thick crystal structures, which are thought to be the main building blocks of future nanotechnology, reliable theoretical predictions of their electronic, vibrational and optical properties are of great importance. Recent studies revealed the reliable predictive power of existing theoretical approaches based on density functional theory (DFT).
By generalizing the Kubo-Streda formula for calculating electrical conductivities to the thermoelectric coefficients, we theoretically study the anomalous Nernst effect (ANE) on the surface of a topological insulator induced by a finite concentration of magnetic impurities. The ANE is found to be modulated by the impurity scattering and thermal fluctuations, simultaneously, and so exhibits rich structures in the energy space. While the anomalous Hall conductivity is half-integer quantized with the Fermi level across the magnetic-impurity-induced gap, the anomalous Nernst signal (ANS) is fully suppressed and the thermopower is linear-dependent on the Fermi energy. Around the magnetic-impurity-induced localized levels, the ANS and thermopower are resonant enhanced. The suppression and enhancement of the thermoelectric coefficients will compete with each other as the magnetic impurity potential increases continually. More interestingly, when a finite charge potential is included, the resonant peaks of the ANS and thermopower will be renormalized, making the signs of the ANS and thermopower tunable by the strength of the charge potential.
Three-dimensional (3D) topological insulators (TIs) are known to carry 2D Dirac-like topological surface states in which spin-momentum locking prohibits backscattering. When thinned down to a few nanometers, the hybridization between the topological surface states at the top and bottom surfaces results in a topological quantum phase transition, which can lead to the emergence of a quantum spin Hall phase. Here, we study the thickness-dependent transport properties across the quantum phase transition on the example of (Bi$_{0.16}$Sb$_{0.84}$)$_2$Te$_3$ films, with a four-tip scanning tunnelling microscope. Our findings reveal an exponential drop of the conductivity below the critical thickness. The steepness of this drop indicates the presence of spin-conserving backscattering between the top and bottom surface states, effectively lifting the spin-momentum locking and resulting in the opening of a gap at the Dirac point. Our experiments provide crucial steps towards the detection of quantum spin Hall states in transport measurements.
We investigate the character of the van der Waals (vdW) torque and force between two coplanar and dielectrically anisotropic topological insulator (TI) slabs separated by a vacuum gap in the non-retardation regime, where the optic axes of the slabs are each perpendicular to the normal direction to the slab-gap interface and also generally differently oriented from each other. We find that in addition to the magnetoelectric coupling strength, the anisotropy can also influence the sign of the vdW force, viz., a repulsive vdW force can become attractive if the anistropy is increased sufficiently. In addition, the vdW force oscillates as a function of the angular difference between the optic axes of the TI slabs, being most repulsive/least attractive (least repulsive/most attractive) for angular differences that are integer (half-integer) multiples of $pi$. Our third finding is that the vdW torque for TI slabs is generally weaker than that for ordinary dielectric slabs. Our work provides the first instance in which the vector potential appears in a calculation of the vdW interaction for which the limit is non-retarded or static.