Do you want to publish a course? Click here

Anomalous Nernst effect on a magnetically-doped topological insulator surface: A Greens function approach

57   0   0.0 ( 0 )
 Added by Ming-Xun Deng
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

By generalizing the Kubo-Streda formula for calculating electrical conductivities to the thermoelectric coefficients, we theoretically study the anomalous Nernst effect (ANE) on the surface of a topological insulator induced by a finite concentration of magnetic impurities. The ANE is found to be modulated by the impurity scattering and thermal fluctuations, simultaneously, and so exhibits rich structures in the energy space. While the anomalous Hall conductivity is half-integer quantized with the Fermi level across the magnetic-impurity-induced gap, the anomalous Nernst signal (ANS) is fully suppressed and the thermopower is linear-dependent on the Fermi energy. Around the magnetic-impurity-induced localized levels, the ANS and thermopower are resonant enhanced. The suppression and enhancement of the thermoelectric coefficients will compete with each other as the magnetic impurity potential increases continually. More interestingly, when a finite charge potential is included, the resonant peaks of the ANS and thermopower will be renormalized, making the signs of the ANS and thermopower tunable by the strength of the charge potential.



rate research

Read More

The surface of topological insulators is proposed as a promising platform for spintronics and quantum information applications. In particular, when time- reversal symmetry is broken, topological surface states are expected to exhibit a wide range of exotic spin phenomena for potential implementation in electronics. Such devices need to be fabricated using nanoscale artificial thin films. It is of critical importance to study the spin behavior of artificial topological MBE thin films associated with magnetic dopants, and with regards to quantum size effects related to surface-to-surface tunneling as well as experimentally isolate time-reversal breaking from non-intrinsic surface electronic gaps. Here we present observation of the first (and thorough) study of magnetically induced spin reorientation phenomena on the surface of a topological insulator. Our results reveal dramatic rearrangements of the spin configuration upon magnetic doping contrasted with chemically similar nonmagnetic doping as well as with quantum tunneling phenomena in ultra-thin high quality MBE films. While we observe that the spin rearrangement induced by quantum tunneling occurs in a time-reversal invariant fashion, we present critical and systematic observation of an out-of-plane spin texture evolution correlated with magnetic interactions, which breaks time-reversal symmetry, demonstrating microscopic TRB at a Kramers point on the surface.
The magneto-transport and magnetization measurements of Sb1.90Cu0.10Te3 were performed at different temperatures and different fields. Magneto-transport measurement at high field indicates the coexistence of both bulk and surface states. The magnetization shows the induced antiferromagnetic ordering with Cu doping and the observed quantum oscillation in it indicates that magnetization in Sb1.90Cu0.10Te3 is the bulk property. The non linearity in Hall data suggests the existence of anomalous and topological Hall effect. The anomalous and topological Hall effect (THE) from measured hall data of Cu doped Sb2Te3 topological insulator have been evaluated.
We study the electronic and transport properties of a topological insulator nanowire including selective magnetic doping of its surfaces. We use a model which is appropriate to describe materials like Bi$_2$Se$_3$ within a k.p approximation and consider nanowires with a rectangular geometry. Within this model the magnetic doping at the (111) surfaces induces a Zeeman field which opens a gap at the Dirac cones corresponding to the surface states. For obtaining the transport properties in a two terminal configuration we use a recursive Green function method based on a tight-binding model which is obtained by discretizing the original continuous model. For the case of uniform magnetization of two opposite nanowire (111) surfaces we show that the conductance can switch from a quantized value of $e^2/h$ (when the magnetizations are equal) to a very small value (when they are opposite). We also analyze the case of non-uniform magnetizations in which the Zeeman field on the two opposite surfaces change sign at the middle of the wire. For this case we find that conduction by resonant tunneling through a chiral state bound at the middle of the wire is possible. The resonant level position can be tuned by imposing an Aharonov-Bohm flux through the nanowire cross section.
Heterostructures between topological insulators (TI) and magnetic insulators represent a pathway to realize the quantum anomalous Hall effect (QAHE). Using density functional theory based systematic screening and investigation of thermodynamic, magnetic and topological properties of heterostructures, we demonstrate that forming a type-I heterostructure between a wide gap antiferromagnetic insulator Cr$_2$O$_3$ and a TI-film, such as Sb$_2$Te$_3$, can lead to pinning of the Fermi-level at the center of the gap, even when magnetically doped. Cr-doping in the heterostructure increases the gap to $sim$ 64.5 meV, with a large Zeeman energy from the interfacial Cr dopants, thus overcoming potential metallicity due to band bending effects. By fitting the band-structure around the Fermi-level to a 4-band k.p model Hamiltonian, we show that Cr doped Sb$_2$Te$_3$/Cr$_2$O$_3$ is a Chern insulator with a Chern number C = -1. Transport calculations further show chiral edge-modes localized at the top/bottom of the TI-film to be the dominant current carriers in the material. Our predictions of a large interfacial magnetism due to Cr-dopants, that coupled antiferromagnetically to the AFM substrate is confirmed by our polarised neutron reflectometry measurements on MBE grown Cr doped Sb$_2$Te$_3$/Cr$_2$O$_3$ heterostructures, and is consistent with a positive exchange bias measured in such systems recently. Consequently, Cr doped Sb$_2$Te$_3$/Cr$_2$O$_3$ heterostructure represents a promising platform for the development of functional topological magnetic devices, with high tunability.
128 - Nan Liu , Xuefan Niu , Yuxin Liu 2020
Constructing heterostructures of a topological insulator (TI) with an undoped magnetic insulator (MI) is a clean and versatile approach to break the time-reversible symmetry in the TI surface states. Despite a lot of efforts, the strength of interfacial magnetic proximity effect (MPE) is still too weak to achieve the quantum anomalous Hall effect and many other topological quantum phenomena. Recently, a new approach based on intercalation of atomic layers of MI, referred to as magnetic extension, was proposed to realize strong MPE [2D Mater. 4, 025082(2017)]. Motivated by this proposal, here, we study a magnetic extension system prepared by molecular beam epitaxy growth of MnSe thin films on topological insulator (Bi,Sb)2Te3. Direct evidence is obtained for intercalation of MnSe atomic layer into a few quintuple layers of (Bi,Sb)2Te3, forming either a double magnetic septuple layer (SL) or an isolated single SL at the interface, where one SL denotes a van der Waals building block consisting of B-A-B-Mn-B-A-B (A=Bi1-xSbx, B= Te1-ySey). The two types of interfaces (namely TI/mono-SL and TI/bi-SL) have different MPE, which is manifested as distinctively different transport behaviors. Specifically, the mono-SL induces a spinflip transition with a sharp change at small magnetic field in the anomalous Hall effect of TI layers, while the bi-SL induces a spin-flop transition with a slow change at large field. Our work demonstrates a useful platform to realize the full potential of the magnetic extension approach for pursuing novel topological physics and related device applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا