Do you want to publish a course? Click here

Van der Waals torque and force between anisotropic topological insulator slabs

126   0   0.0 ( 0 )
 Added by Bing-Sui Lu
 Publication date 2017
  fields Physics
and research's language is English
 Authors Bing-Sui Lu




Ask ChatGPT about the research

We investigate the character of the van der Waals (vdW) torque and force between two coplanar and dielectrically anisotropic topological insulator (TI) slabs separated by a vacuum gap in the non-retardation regime, where the optic axes of the slabs are each perpendicular to the normal direction to the slab-gap interface and also generally differently oriented from each other. We find that in addition to the magnetoelectric coupling strength, the anisotropy can also influence the sign of the vdW force, viz., a repulsive vdW force can become attractive if the anistropy is increased sufficiently. In addition, the vdW force oscillates as a function of the angular difference between the optic axes of the TI slabs, being most repulsive/least attractive (least repulsive/most attractive) for angular differences that are integer (half-integer) multiples of $pi$. Our third finding is that the vdW torque for TI slabs is generally weaker than that for ordinary dielectric slabs. Our work provides the first instance in which the vector potential appears in a calculation of the vdW interaction for which the limit is non-retarded or static.



rate research

Read More

We analyse van der Waals interactions between a pair of dielectrically anisotropic plane-layered media interacting across a dielectrically isotropic solvent medium. We develop a general formalism based on transfer matrices to investigate the van der Waals torque and force in the limit of weak birefringence and dielectric matching between the ordinary axes of the anisotropic layers and the solvent. We apply this formalism to study the following systems: (i) a pair of single anisotropic layers, (ii) a single anisotropic layer interacting with a multilayered slab consisting of alternating anisotropic and isotropic layers, and (iii) a pair of multilayered slabs each consisting of alternating anisotropic and isotropic layers, looking at the cases where the optic axes lie parallel and/or perpendicular to the plane of the layers. For the first case, the optic axes of the oppositely facing anisotropic layers of the two interacting slabs generally possess an angular mismatch, and within each multilayered slab the optic axes may either be the same, or undergo constant angular increments across the anisotropic layers. In particular, we examine how the behaviors of the van der Waals torque and force can be tuned by adjusting the layer thicknesses, the relative angular increment within each slab, and the angular mismatch between the slabs.
The van der Waals interactions between two parallel graphitic nanowiggles (GNWs) are calculated using the coupled dipole method (CDM). The CDM is an efficient and accurate approach to determine such interactions explicitly by taking into account the discrete atomic structure. Our findings show that the van der Waals forces vary from attraction to repulsion as nanoribbons move along their lengths with respect to each other. This feature leads to a number of stable and unstable positions of the system during the movement process. These positions can be tuned by changing the length of GNW. Moreover, the influence of the thermal effect on the van der Waals interactions is also extensively investigated. This work would give good direction for both future theoretical and experimental studies.
The designer approach has become a new paradigm in accessing novel quantum phases of matter. Moreover, the realization of exotic states such as topological insulators, superconductors and quantum spin liquids often poses challenging or even contradictory demands for any single material. For example, it is presently unclear if topological superconductivity, which has been suggested as a key ingredient for topological quantum computing, exists at all in any naturally occurring material . This problem can be circumvented by using designer heterostructures combining different materials, where the desired physics emerges from the engineered interactions between the different components. Here, we employ the designer approach to demonstrate two major breakthroughs - the fabrication of van der Waals (vdW) heterostructures combining 2D ferromagnetism with superconductivity and the observation of 2D topological superconductivity. We use molecular-beam epitaxy (MBE) to grow two-dimensional islands of ferromagnetic chromium tribromide (CrBr$_3$) on superconducting niobium diselenide (NbSe$_2$) and show the signatures of one-dimensional Majorana edge modes using low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). The fabricated two-dimensional vdW heterostructure provides a high-quality controllable platform that can be integrated in device structures harnessing topological superconductivity. Finally, layered heterostructures can be readily accessed by a large variety of external stimuli potentially allowing external control of 2D topological superconductivity through electrical, mechanical, chemical, or optical means.
Current-induced control of magnetization in ferromagnets using spin-orbit torque (SOT) has drawn attention as a new mechanism for fast and energy efficient magnetic memory devices. Energy-efficient spintronic devices require a spin-current source with a large SOT efficiency (${xi}$) and electrical conductivity (${sigma}$), and an efficient spin injection across a transparent interface. Herein, we use single crystals of the van der Waals (vdW) topological semimetal WTe$_2$ and vdW ferromagnet Fe$_3$GeTe$_2$ to satisfy the requirements in their all-vdW-heterostructure with an atomically sharp interface. The results exhibit values of ${xi}{approx}4.6$ and ${sigma}{approx}2.25{times}10^5 {Omega}^{-1} m^{-1}$ for WTe$_2$. Moreover, we obtain the significantly reduced switching current density of $3.90{times}10^6 A/cm^2$ at 150 K, which is an order of magnitude smaller than those of conventional heavy-metal/ ferromagnet thin films. These findings highlight that engineering vdW-type topological materials and magnets offers a promising route to energy-efficient magnetization control in SOT-based spintronics.
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der Waals interactions. However, the number of possible combinations within this library is staggering, and fully exploring their potential is a daunting task. Here we introduce van der Waals metamaterials to rapidly prototype and screen their quantum counterparts. These layered metamaterials are designed to reshape the flow of ultrasound to mimic electron motion. In particular, we show how to construct analogues of all stacking configurations of bilayer and trilayer graphene through the use of interlayer membranes that emulate van der Waals interactions. By changing the membranes density and thickness, we reach coupling regimes far beyond that of conventional graphene. We anticipate that van der Waals metamaterials will explore, extend, and inform future electronic devices. Equally, they allow the transfer of useful electronic behavior to acoustic systems, such as flat bands in magic-angle twisted bilayer graphene, which may aid the development of super-resolution ultrasound imagers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا