Do you want to publish a course? Click here

A Herschel view of the far-infrared properties of submillimetre galaxies

145   0   0.0 ( 0 )
 Added by Benjamin Magnelli
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a sample of 61 submillimetre galaxies (SMGs) selected from ground-based surveys, with known spectroscopic redshifts and observed with Herschel as part of the PACS Evolutionary Probe (PEP) and the Herschel Multi-tiered Extragalactic Survey (HerMES) key programmes. We use the broad far-infrared wavelength coverage (100-600um) provided by the combination of PACS and SPIRE observations. Using a power-law temperature distribution model to derive infrared luminosities and dust temperatures, we measure a dust emissivity spectral index for SMGs of beta=2.0+/-0.2. Our results unveil the diversity of the SMG population. Some SMGs exhibit extreme infrared luminosities of ~10^13 Lsun and relatively warm dust components, while others are fainter (~10^12 Lsun) and are biased towards cold dust temperatures. The extreme infrared luminosities of some SMGs (LIR>10^12.7 Lsun, 26/61 systems) imply SFRs of >500Msun yr^-1. Such high SFRs are difficult to reconcile with a secular mode of star formation, and may instead correspond to a merger-driven stage in the evolution of these galaxies. Another observational argument in favour of this scenario is the presence of dust temperatures warmer than that of SMGs of lower luminosities (~40K as opposed to ~25K), consistent with observations of local ULIRGs triggered by major mergers and with results from hydrodynamic simulations of major mergers combined with radiative transfer calculations. Luminous SMGs are also offset from normal star-forming galaxies in the stellar mass-SFR plane, suggesting that they are undergoing starburst events with short duty cycles, compatible with the major merger scenario. On the other hand, a significant fraction of the low infrared luminosity SMGs have cold dust temperatures, are located close to the main sequence of star formation, and thus might be evolving through a secular mode of star formation. [abridged]



rate research

Read More

(abridged) We present the first study of the farIR properties of high redshift, radio-selected ULIRGs using deep observations obtained with SPIRE from the Herschel Multi-tiered Extragalactic Survey (HerMES). These galaxies span a large range of 850um fluxes from submillimetre-luminous ~10mJy SCUBA galaxies -- SMGs to ~1.5mJy from stacked SCUBA non-detections, thus likely representing a complete distribution of ULIRG spectral energy distributions. From Keck spectroscopic surveys in the Lockman-North field we identified a sample of 31 SMGs and 37 submillimetre-faint, optically-faint radio galaxies (OFRGs), all with radio-inferred IR luminosities >10^12 Lsun. These galaxies were cross-identified with SPIRE 250, 350 and 500um catalogs based on fluxes extracted at 24um positions in the SWIRE survey, yielding a sample of more than half of the galaxies well detected in at least two of the SPIRE bandpasses. By fitting greybody dust models to the SPIRE photometry together with SCUBA 850um measurements, we infer dust temperatures and far-infrared luminosities. The OFRGs detected by SPIRE have median <T_d>= 41+-5 K and the SMGs have <T_d>= 34+-5 K, both in reasonable agreement with previous (pre-Herschel) estimates, reaffirming that the local FIR/radio correlation holds (at least for this subset of high-z ULIRGs) at high redshift. Our observations firstly confirm that a substantial fraction of OFRGs exhibit large infrared luminosities corresponding to SFRs of ~400 Msun/yr. The SPIRE observations secondly confirm the higher dust temperatures for these OFRGs than similarly selected SMGs, consistent with early predictions of the submm-faint radio populations. Our observations also clearly confirm the large infrared luminosities of most SMGs selected with S850um>5 mJy and radio and strong 24um detections, corresponding to SFRs of ~700 Msun/yr.
140 - J. R. Mullaney 2011
We present a study of the infrared properties of X-ray selected, moderate luminosity (Lx=10^{42}-10^{44}ergs/s) active galactic nuclei (AGNs) up to z~3, to explore the links between star formation in galaxies and accretion onto their central black holes. We use 100um and 160um fluxes from GOODS-Herschel -the deepest survey yet undertaken by the Herschel telescope- and show that in >94 per cent of cases these fluxes are dominated by the host. We find no evidence of any correlation between the X-ray and infrared luminosities of moderate AGNs at any redshift, suggesting that star-formation is decoupled from nuclear (AGN) activity. The star formation rates of AGN hosts increase strongly with redshift; by a factor of 43 from z<0.1 to z=2-3 for AGNs with the same X-ray luminosities. This increase is consistent with the factor of 25-50 increase in the specific star formation rates (SSFRs) of normal, star-forming (main-sequence) galaxies. Indeed, the average SSFRs of AGN hosts are only marginally (20 per cent) lower than those of main-sequence galaxies, with this small deficit being due to a fraction of AGNs residing in quiescent (low-SSFR) galaxies. We estimate 79+/-10 per cent of moderate AGNs are hosted in main-sequence galaxies, 15+/-7 per cent in quiescent galaxies and <10 per cent in strongly starbursting galaxies. The fractions of all main sequence galaxies at z<2 experiencing a period of moderate nuclear activity is strongly dependent on galaxy stellar mass (Mstars); rising from a few per cent at Mstars~10^{10}Msun to >20 per cent at Mstars>10^{11}Msun. Our results indicate that it is galaxy stellar mass that is most important in dictating whether a galaxy hosts a moderate luminosity AGN. We argue that the majority of moderate nuclear activity is fuelled by internal mechanisms rather than violent mergers, suggesting that disk instabilities could be an important AGN feeding mechanism.
396 - Mark Swinbank 2013
We exploit ALMA 870um (345GHz) observations of submillimetre sources in the Extended Chandra Deep Field South to investigate the far-infrared properties of high-redshift submillimetre galaxies (SMGs). Using the precisely located 870um ALMA positions of 99 SMGs, together with 24um and radio imaging of this field, we deblend the Herschel/SPIRE imaging of this region to extract their far-infrared fluxes and colours. The median photometric redshifts for ALMA LESS (ALESS) SMGs which are detected in at least two SPIRE bands increases with wavelength of the peak in their SEDs, with z=2.3+/-0.2, 2.5+/-0.3 and 3.5+/-0.5 for the 250, 350 and 500-um peakers respectively. We find that 34 ALESS SMGs do not have a >3-sigma counterpart at 250, 350 or 500-um. These galaxies have a median photometric redshift of z=3.3+/-0.5, which is higher than the full ALESS SMG sample; z=2.5+/-0.2. Using the photometric redshifts together with the 250-870um photometry, we estimate the far-infrared luminosities and characteristic dust temperature of each SMG. The median infrared luminosity of the S_870um>2mJy SMGs is L_IR=(3.0+/-0.3)x10^{12}Lo(SFR=300+/-30Mo/yr). At a fixed luminosity, the characteristic dust temperature of these high-redshift SMGs is 2-3K lower than comparably luminous galaxies at z=0, reflecting the more extended star formation occurring in these systems. By extrapolating the 870um number counts to S_ 870um=1mJy, we show that the contribution of S_870um>1mJy SMGs to the cosmic star formation budget is 20% of the total over the redshift range z~1-4. We derive a median dust mass for these SMGs of M_d=(3.6+/-0.3)x10^8Mo and by adopting an appropriate gas-to-dust ratio, we estimate an average molecular mass of M_H2=(4.2+/-0.4)x10^{10}Mo. Finally, we use our estimates of the H2 masses to show that SMGs with S_870um>1mJy contain ~10% of the z~2 volume-averaged H2 mass density at this epoch.
82 - C. J. Cesarsky 1999
From the disk of normal galaxies to the nucleus of prototype active sources, we review the wealth of results and new understanding provided by recent infrared probes and, in particular, the four instruments on-board of ISO.
New far-infrared and sub-millimeter photometry from the Herschel Space Observatory is presented for 61 nearby galaxies from the Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel (KINGFISH) sample. The spatially-integrated fluxes are largely consistent with expectations based on Spitzer far-infrared photometry and extrapolations to longer wavelengths using popular dust emission models. Dwarf irregular galaxies are notable exceptions, as already noted by other authors, as their 500um emission shows evidence for a sub-millimeter excess. In addition, the fraction of dust heating attributed to intense radiation fields associated with photo-dissociation regions is found to be (21+/-4)% larger when Herschel data are included in the analysis. Dust masses obtained from the dust emission models of Draine & Li are found to be on average nearly a factor of two higher than those based on single-temperature modified blackbodies, as single blackbody curves do not capture the full range of dust temperatures inherent to any galaxy. The discrepancy is largest for galaxies exhibiting the coolest far-infrared colors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا