Do you want to publish a course? Click here

An ALMA Survey of Submillimetre Galaxies in the Extended Chandra Deep Field South: The Far-Infrared Properties of SMGs

389   0   0.0 ( 0 )
 Added by James Simpson
 Publication date 2013
  fields Physics
and research's language is English
 Authors Mark Swinbank




Ask ChatGPT about the research

We exploit ALMA 870um (345GHz) observations of submillimetre sources in the Extended Chandra Deep Field South to investigate the far-infrared properties of high-redshift submillimetre galaxies (SMGs). Using the precisely located 870um ALMA positions of 99 SMGs, together with 24um and radio imaging of this field, we deblend the Herschel/SPIRE imaging of this region to extract their far-infrared fluxes and colours. The median photometric redshifts for ALMA LESS (ALESS) SMGs which are detected in at least two SPIRE bands increases with wavelength of the peak in their SEDs, with z=2.3+/-0.2, 2.5+/-0.3 and 3.5+/-0.5 for the 250, 350 and 500-um peakers respectively. We find that 34 ALESS SMGs do not have a >3-sigma counterpart at 250, 350 or 500-um. These galaxies have a median photometric redshift of z=3.3+/-0.5, which is higher than the full ALESS SMG sample; z=2.5+/-0.2. Using the photometric redshifts together with the 250-870um photometry, we estimate the far-infrared luminosities and characteristic dust temperature of each SMG. The median infrared luminosity of the S_870um>2mJy SMGs is L_IR=(3.0+/-0.3)x10^{12}Lo(SFR=300+/-30Mo/yr). At a fixed luminosity, the characteristic dust temperature of these high-redshift SMGs is 2-3K lower than comparably luminous galaxies at z=0, reflecting the more extended star formation occurring in these systems. By extrapolating the 870um number counts to S_ 870um=1mJy, we show that the contribution of S_870um>1mJy SMGs to the cosmic star formation budget is 20% of the total over the redshift range z~1-4. We derive a median dust mass for these SMGs of M_d=(3.6+/-0.3)x10^8Mo and by adopting an appropriate gas-to-dust ratio, we estimate an average molecular mass of M_H2=(4.2+/-0.4)x10^{10}Mo. Finally, we use our estimates of the H2 masses to show that SMGs with S_870um>1mJy contain ~10% of the z~2 volume-averaged H2 mass density at this epoch.



rate research

Read More

We present a study of the radio properties of 870$mu$m-selected submillimetre galaxies (SMGs), observed at high resolution with ALMA in the Extended Chandra Deep Field South. From our initial sample of 76 ALMA SMGs, we detect 52 SMGs at $>3sigma$ significance in VLA 1400MHz imaging, of which 35 are also detected at $>3sigma$ in new 610MHz GMRT imaging. Within this sample of radio-detected SMGs, we measure a median radio spectral index $alpha_{610}^{1400} = -0.79 pm 0.06$, (with inter-quartile range $alpha=[-1.16,-0.56]$) and investigate the far-infrared/radio correlation via the parameter $q_{rm IR}$, the logarithmic ratio of the rest-frame 8-1000$mu$m flux and monochromatic radio flux. Our median $q_{rm IR} = 2.56 pm 0.05$ (inter-quartile range $q_{rm IR}=[2.42,2.78]$) is higher than that typically seen in single-dish 870$mu$m-selected sources ($q_{rm IR} sim 2.4$), which may reflect the fact that our ALMA-based study is not biased to radio-bright counterparts, as previous samples were. Finally, we search for evidence that $q_{rm IR}$ and $alpha$ evolve with age in a co-dependent manner, as predicted by starburst models: the data populate the predicted region of parameter space, with the stellar mass tending to increase along tracks of $q_{rm IR}$ versus $alpha$ in the direction expected, providing the first observational evidence in support of these models.
We present spectroscopic redshifts of S(870)>2mJy submillimetre galaxies (SMGs) which have been identified from the ALMA follow-up observations of 870um detected sources in the Extended Chandra Deep Field South (the ALMA-LESS survey). We derive spectroscopic redshifts for 52 SMGs, with a median of z=2.4+/-0.1. However, the distribution features a high redshift tail, with ~25% of the SMGs at z>3. Spectral diagnostics suggest that the SMGs are young starbursts, and the velocity offsets between the nebular emission and UV ISM absorption lines suggest that many are driving winds, with velocity offsets up to 2000km/s. Using the spectroscopic redshifts and the extensive UV-to-radio photometry in this field, we produce optimised spectral energy distributions (SEDs) using Magphys, and use the SEDs to infer a median stellar mass of M*=(6+/-1)x10^{10}Msol for our SMGs with spectroscopic redshifts. By combining these stellar masses with the star-formation rates (measured from the far-infrared SEDs), we show that SMGs (on average) lie a factor ~5 above the main-sequence at z~2. We provide this library of 52 template fits with robust and well-sampled SEDs available as a resource for future studies of SMGs, and also release the spectroscopic catalog of ~2000 (mostly infrared-selected) galaxies targeted as part of the spectroscopic campaign.
126 - Alexander Karim 2012
We report the first counts of faint submillimetre galaxies (SMG) in the 870-um band derived from arcsecond resolution observations with the Atacama Large Millimeter Array (ALMA). We have used ALMA to map a sample of 122 870-um-selected submillimetre sources drawn from the (0.5x0.5)deg^2 LABOCA Extended Chandra Deep Field South Submillimetre Survey (LESS). These ALMA maps have an average depth of sigma(870um)~0.4mJy, some ~3x deeper than the original LABOCA survey and critically the angular resolution is more than an order of magnitude higher, FWHM of ~1.5 compared to ~19 for the LABOCA discovery map. This combination of sensitivity and resolution allows us to precisely pin-point the SMGs contributing to the submillimetre sources from the LABOCA map, free from the effects of confusion. We show that our ALMA-derived SMG counts broadly agree with the submillimetre source counts from previous, lower-resolution single-dish surveys, demonstrating that the bulk of the submillimetre sources are not caused by blending of unresolved SMGs. The difficulty which well-constrained theoretical models have in reproducing the high-surface densities of SMGs, thus remains. However, our observations do show that all of the very brightest sources in the LESS sample, S(870um)>12mJy, comprise emission from multiple, fainter SMGs, each with 870-um fluxes of <9mJy. This implies a natural limit to the star-formation rate in SMGs of <10^3 M_Sun/yr, which in turn suggests that the space densities of z>1 galaxies with gas masses in excess of ~5x10^10 M_Sun is <10^-5 Mpc^-3. We also discuss the influence of this blending on the identification and characterisation of the SMG counterparts to these bright submillimetre sources and suggest that it may be responsible for previous claims that they lie at higher redshifts than fainter SMGs.
We present radio and infrared (3.6-24um) counterparts to submillimetre galaxies (SMGs) detected in the Extended Chandra Deep Field South with the LABOCA 870-um bolometer camera on the 12-m Atacama Pathfinder Experiment. Using the Very Large Array at 1.4GHz and Spitzer we have identified secure counterparts to 79 of the 126 SMGs (SNR>3.7, S_870>4.4mJy) in the field, 62 via their radio and/or 24-um emission, the remainder using a colour-flux cut on IRAC 3.6- and 5.8-um sources chosen to maximise the number of secure, coincident radio and 24-um counterparts. In constructing our radio catalogue, we have corrected for the effects of `flux boosting, then used the corrected flux densities to estimate the redshifts of the SMGs based on the radio/submm spectral indices. The effect of the boosting correction is to increase the median redshift by 0.2 resulting in a value of z=2.2 (+0.7-0.8) (1-sigma errors) for the secure radio counterparts, in agreement with other studies, both spectroscopic and photometric.
120 - J. L. Wardlow 2010
[abridged] We derive photometric redshifts from 17-band optical to mid-IR photometry of 74 robust counterparts to 68 of the 126 submillimetre galaxies (SMGs) selected at 870um by LABOCA observations in the ECDFS. The median photometric redshift of identified SMGs is z=2.2pm0.1, the interquartile range is z=1.8-2.7 and we identify 10 (~15%) high-redshift (z>3) SMGs. We derive a simple redshift estimator for SMGs based on the 3.6 and 8um fluxes, which is accurate to Delta_z~0.4 for SMGs at z<4. A statistical analysis of sources around unidentified SMGs identifies a population of likely counterparts with a redshift distribution peaking at z=2.5pm0.3, which likely comprises ~60% of the unidentified SMGs. This confirms that the bulk of the undetected SMGs are coeval with those detected in the radio/mid-IR. We conclude that ~15% of all the SMGs are below the flux limits of our survey and lie at z>3 and hence ~30% of all SMGs have z>3. We estimate that the full S_870um>4mJy SMG population has a median redshift of 2.5pm0.6. In contrast to previous suggestions we find no significant correlation between S_870um and redshift. The median stellar mass of the SMGs derived from SED fitting is (9.2pm0.9)x10^10Msun and the interquartile range is (4.7-14)x10^10Msun, although we caution that uncertainty in the star-formation histories results in a factor of ~5 uncertainty in these stellar masses. The median characteristic dust temperature of SMGs is 35.9pm1.4K and the interquartile range is 28.5-43.3K. The infrared luminosity function shows that SMGs at z=2-3 typically have higher far-IR luminosities and luminosity density than those at z=1-2. This is mirrored in the evolution of the star-formation rate density (SFRD) for SMGs which peaks at z~2. The maximum contribution of bright SMGs to the global SFRD (~5% for SMGs with S_870um>4mJy; ~50% for SMGs with S_870um>1mJy) also occurs at z~2.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا