Do you want to publish a course? Click here

Type Ia supernovae in globular clusters: observational upper limits

259   0   0.0 ( 0 )
 Added by Rasmus Voss
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the dense stellar environment of the globular clusters, compact binaries are produced dynamically. Therefore the fraction of type Ia supernovae that explode in globular clusters is expected to be higher than the fraction of mass residing in these. We have searched for globular clusters at the positions of observed type Ia supernovae. We used archival HST images and literature data, covering the positions either before the supernovae exploded, or long enough after that the supernovae have faded below the luminosities of globular clusters. We did not find evidence for globular clusters at any of the supernova positions. For 18 type Ia supernovae, the observations are sensitive enough that any globular cluster would have been detected, and for further 17 type Ia supernovae, the brighter globular clusters would have been detected. Correcting for incompleteness, we derive a 90% upper limit of 0.09 on the fraction of type Ia supernovae that explode in globular clusters for the full sample and 0.22 for the sample of supernovae in late-type galaxies. This allows us to limit enhancements per unit stellar mass for a coeval population eta_{co}<50 (100) with 90% (99%) confidence. We find that by observing the positions of a sample of less than 100 type Ia supernovae in the outer parts of early-type galaxies, it will be possible to probe the currently favoured range of eta_{co}~1-10.



rate research

Read More

Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) probe the outermost layers of the explosion, and UV spectra of SNe Ia are expected to be extremely sensitive to differences in progenitor composition and the details of the explosion. Here we present the first study of a sample of high signal-to-noise ratio SN Ia spectra that extend blueward of 2900 A. We focus on spectra taken within 5 days of maximum brightness. Our sample of ten SNe Ia spans the majority of the parameter space of SN Ia optical diversity. We find that SNe Ia have significantly more diversity in the UV than in the optical, with the spectral variance continuing to increase with decreasing wavelengths until at least 1800 A (the limit of our data). The majority of the UV variance correlates with optical light-curve shape, while there are no obvious and unique correlations between spectral shape and either ejecta velocity or host-galaxy morphology. Using light-curve shape as the primary variable, we create a UV spectral model for SNe Ia at peak brightness. With the model, we can examine how individual SNe vary relative to expectations based on only their light-curve shape. Doing this, we confirm an excess of flux for SN 2011fe at short wavelengths, consistent with its progenitor having a subsolar metallicity. While most other SNe Ia do not show large deviations from the model, ASASSN-14lp has a deficit of flux at short wavelengths, suggesting that its progenitor was relatively metal rich.
We present ultraviolet line identifications of near maximum-light HST observations of SN 2011fe using synthetic spectra generated from both SYNOW and $texttt{PHOENIX}$. We find the spectrum to be dominated by blends of iron group elements Fe, Co, and Ni (as expected due to heavy line blanketing by these elements in the UV) and for the first time identify lines from C IV and Si IV in a supernova spectrum. We also find that classical delayed detonation models of Type Ia supernovae are able to accurately reproduce the flux levels of SN 2011fe in the UV. Further analysis reveals that photionization edges play an important role in feature formation in the far-UV, and that temperature variations in the outer layers of the ejecta significantly alter the Fe III/Fe II ratio producing large flux changes in the far-UV and velocity shifts in mid-UV features. SN 2011fe is the best observed core-normal SNe Ia, therefore analysis its of UV spectra shows the power of UV spectra in discriminating between different metalicities and progenitor scenarios of Type Ia supernovae, due to the fact that the UV probes the outermost layers of the Type Ia supernova, which are most sensitive to metalicity and progenitor variations.
A two-dimensional hydrodynamics code for Type Ia supernovae (SNIa) simulations is presented. The code includes a fifth-order shock-capturing scheme WENO, detailed nuclear reaction network, flame-capturing scheme and sub-grid turbulence. For post-processing we have developed a tracer particle scheme to record the thermodynamical history of the fluid elements. We also present a one-dimensional radiative transfer code for computing observational signals. The code solves the Lagrangian hydrodynamics and moment-integrated radiative transfer equations. A local ionization scheme and composition dependent opacity are included. Various verification tests are presented, including standard benchmark tests in one and two dimensions. SNIa models using the pure turbulent deflagration model and the delayed-detonation transition model are studied. The results are consistent with those in the literature. We compute the detailed chemical evolution using the tracer particles histories, and we construct corresponding bolometric light curves from the hydrodynamics results. We also use a Graphics Processing Unit (GPU) to speed up the computation of some highly repetitive subroutines. We achieve an acceleration of 50 times for some subroutines and a factor of 6 in the global run time.
In the single degenerate scenario for Type Ia supernova (SNeIa), a white dwarf (WD) must gain a significant amount of matter from a companion star. Because the accreted mass carries angular momentum, the WD is likely to achieve fast spin periods, which can increase the critical mass, $M_{crit}$, needed for explosion. When $M_{crit}$ is higher than the maximum mass achieved by the WD, the WD must spin down before it can explode. This introduces a delay between the time at which the WD has completed its epoch of mass gain and the time of the explosion. Matter ejected from the binary during mass transfer therefore has a chance to become diffuse, and the explosion occurs in a medium with a density similar to that of typical regions of the interstellar medium. Also, either by the end of the WDs mass increase or else by the time of explosion, the donor may exhaust its stellar envelope and become a WD. This alters, generally diminishing, explosion signatures related to the donor star. Nevertheless, the spin-up/spin-down model is highly predictive. Prior to explosion, progenitors can be super-$M_{Ch}$ WDs in either wide binaries with WD companions, or else in cataclysmic variables. These systems can be discovered and studied through wide-field surveys. Post explosion, the spin-up/spin-down model predicts a population of fast-moving WDs, low-mass stars, and even brown dwarfs. In addition, the spin-up/spin-down model provides a paradigm which may be able to explain both the similarities and the diversity observed among SNeIa.
Core-collapse SNe (CCSNe): Systematic searches of radio emission from CCSNe are still lacking, and only targeted searches of radio emission from just some of the optically discovered CCSNe in the local universe have been carried out. Optical searches miss a significant fraction of CCSNe due to dust obscuration; CCSN radio searches are thus more promising for yielding the complete, unobscured star-formation rates in the local universe. The SKA yields the possibility to piggyback for free in this area of research by carrying out commensal, wide-field, blind transient survey observations. SKA1-SUR should be able to discover several hundreds of CCSNe in just one year, compared to about a dozen CCSNe that the VLASS would be able to detect in one year, at most. SKA, with an expected sensitivity ten times that of SKA1, is expected to detect CCSNe in the local Universe by the thousands. Therefore, commensal SKA observations could easily result in an essentially complete census of all CCSNe in the local universe, thus yielding an accurate determination of the volumetric CCSN rate. Type Ia SNe: We advocate for the use of the SKA to search for the putative prompt (~first few days after the explosion) radio emission of any nearby type Ia SN, via target-of-opportunity observations. The huge improvement in sensitivity of the SKA with respect to its predecessors will allow to unambiguously discern which progenitor scenario (single-degenerate vs. double-degenerate) applies to them.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا