Do you want to publish a course? Click here

A new hydrodynamics code for Type Ia Supernovae

63   0   0.0 ( 0 )
 Added by Shing Chi Leung
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

A two-dimensional hydrodynamics code for Type Ia supernovae (SNIa) simulations is presented. The code includes a fifth-order shock-capturing scheme WENO, detailed nuclear reaction network, flame-capturing scheme and sub-grid turbulence. For post-processing we have developed a tracer particle scheme to record the thermodynamical history of the fluid elements. We also present a one-dimensional radiative transfer code for computing observational signals. The code solves the Lagrangian hydrodynamics and moment-integrated radiative transfer equations. A local ionization scheme and composition dependent opacity are included. Various verification tests are presented, including standard benchmark tests in one and two dimensions. SNIa models using the pure turbulent deflagration model and the delayed-detonation transition model are studied. The results are consistent with those in the literature. We compute the detailed chemical evolution using the tracer particles histories, and we construct corresponding bolometric light curves from the hydrodynamics results. We also use a Graphics Processing Unit (GPU) to speed up the computation of some highly repetitive subroutines. We achieve an acceleration of 50 times for some subroutines and a factor of 6 in the global run time.



rate research

Read More

Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) probe the outermost layers of the explosion, and UV spectra of SNe Ia are expected to be extremely sensitive to differences in progenitor composition and the details of the explosion. Here we present the first study of a sample of high signal-to-noise ratio SN Ia spectra that extend blueward of 2900 A. We focus on spectra taken within 5 days of maximum brightness. Our sample of ten SNe Ia spans the majority of the parameter space of SN Ia optical diversity. We find that SNe Ia have significantly more diversity in the UV than in the optical, with the spectral variance continuing to increase with decreasing wavelengths until at least 1800 A (the limit of our data). The majority of the UV variance correlates with optical light-curve shape, while there are no obvious and unique correlations between spectral shape and either ejecta velocity or host-galaxy morphology. Using light-curve shape as the primary variable, we create a UV spectral model for SNe Ia at peak brightness. With the model, we can examine how individual SNe vary relative to expectations based on only their light-curve shape. Doing this, we confirm an excess of flux for SN 2011fe at short wavelengths, consistent with its progenitor having a subsolar metallicity. While most other SNe Ia do not show large deviations from the model, ASASSN-14lp has a deficit of flux at short wavelengths, suggesting that its progenitor was relatively metal rich.
557 - Laura Chomiuk 2013
SN 2011fe is the nearest supernova of Type Ia (SN Ia) discovered in the modern multi-wavelength telescope era, and it also represents the earliest discovery of a SN Ia to date. As a normal SN Ia, SN 2011fe provides an excellent opportunity to decipher long-standing puzzles about the nature of SNe Ia. In this review, we summarize the extensive suite of panchromatic data on SN 2011fe, and gather interpretations of these data to answer four key questions: 1) What explodes in a SN Ia? 2) How does it explode? 3) What is the progenitor of SN 2011fe? and 4) How accurate are SNe Ia as standardizeable candles? Most aspects of SN 2011fe are consistent with the canonical picture of a massive CO white dwarf undergoing a deflagration-to-detonation transition. However, there is minimal evidence for a non-degenerate companion star, so SN 2011fe may have marked the merger of two white dwarfs.
In the single degenerate scenario for Type Ia supernova (SNeIa), a white dwarf (WD) must gain a significant amount of matter from a companion star. Because the accreted mass carries angular momentum, the WD is likely to achieve fast spin periods, which can increase the critical mass, $M_{crit}$, needed for explosion. When $M_{crit}$ is higher than the maximum mass achieved by the WD, the WD must spin down before it can explode. This introduces a delay between the time at which the WD has completed its epoch of mass gain and the time of the explosion. Matter ejected from the binary during mass transfer therefore has a chance to become diffuse, and the explosion occurs in a medium with a density similar to that of typical regions of the interstellar medium. Also, either by the end of the WDs mass increase or else by the time of explosion, the donor may exhaust its stellar envelope and become a WD. This alters, generally diminishing, explosion signatures related to the donor star. Nevertheless, the spin-up/spin-down model is highly predictive. Prior to explosion, progenitors can be super-$M_{Ch}$ WDs in either wide binaries with WD companions, or else in cataclysmic variables. These systems can be discovered and studied through wide-field surveys. Post explosion, the spin-up/spin-down model predicts a population of fast-moving WDs, low-mass stars, and even brown dwarfs. In addition, the spin-up/spin-down model provides a paradigm which may be able to explain both the similarities and the diversity observed among SNeIa.
76 - M. R. Magee 2018
Recent studies have demonstrated the diversity in type Ia supernovae (SNe Ia) at early times and highlighted a need for a better understanding of the explosion physics as manifested by observations soon after explosion. To this end, we present a Monte Carlo code designed to model the light curves of radioactively driven, hydrogen-free transients from explosion to approximately maximum light. In this initial study, we have used a parametrised description of the ejecta in SNe Ia, and performed a parameter study of the effects of the $^{56}$Ni distribution on the observed colours and light curves for a fixed $^{56}$Ni mass of 0.6 $M_odot$. For a given density profile, we find that models with $^{56}$Ni extending throughout the entirety of the ejecta are typically brighter and bluer shortly after explosion. Additionally, the shape of the density profile itself also plays an important role in determining the shape, rise time, and colours of observed light curves. We find that the multi-band light curves of at least one SNe Ia (SN 2009ig) are inconsistent with less extended $^{56}$Ni distributions, but show good agreement with models that incorporate $^{56}$Ni throughout the entire ejecta. We further demonstrate that comparisons with full $UVOIR$ colour light curves are powerful tools in discriminating various $^{56}$Ni distributions, and hence explosion models.
266 - R. Voss , G. Nelemans 2011
In the dense stellar environment of the globular clusters, compact binaries are produced dynamically. Therefore the fraction of type Ia supernovae that explode in globular clusters is expected to be higher than the fraction of mass residing in these. We have searched for globular clusters at the positions of observed type Ia supernovae. We used archival HST images and literature data, covering the positions either before the supernovae exploded, or long enough after that the supernovae have faded below the luminosities of globular clusters. We did not find evidence for globular clusters at any of the supernova positions. For 18 type Ia supernovae, the observations are sensitive enough that any globular cluster would have been detected, and for further 17 type Ia supernovae, the brighter globular clusters would have been detected. Correcting for incompleteness, we derive a 90% upper limit of 0.09 on the fraction of type Ia supernovae that explode in globular clusters for the full sample and 0.22 for the sample of supernovae in late-type galaxies. This allows us to limit enhancements per unit stellar mass for a coeval population eta_{co}<50 (100) with 90% (99%) confidence. We find that by observing the positions of a sample of less than 100 type Ia supernovae in the outer parts of early-type galaxies, it will be possible to probe the currently favoured range of eta_{co}~1-10.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا