No Arabic abstract
We investigate the effect of supersonic relative velocities between baryons and dark matter, recently shown to arise generically at high redshift, on baryonic acoustic oscillation (BAO) measurements at low redshift. The amplitude of the relative velocity effect at low redshift is model-dependent, but can be parameterized by using an unknown bias. We find that if unaccounted, the relative velocity effect can shift the BAO peak position and bias estimates of the dark energy equation-of-state due to its non-smooth, out-of-phase oscillation structure around the BAO scale. Fortunately, the relative velocity effect can be easily modeled in constraining cosmological parameters without substantially inflating the error budget. We also demonstrate that the presence of the relative velocity effect gives rise to a unique signature in the galaxy bispectrum, which can be utilized to isolate this effect. Future dark energy surveys can accurately measure the relative velocity effect and subtract it from the power spectrum analysis to constrain dark energy models with high precision.
We analyse the power spectrum of the Baryon Oscillation Spectroscopic Survey (BOSS), Data Release 12 (DR12) to constrain the relative velocity effect, which represents a potential systematic for measurements of the Baryon Acoustic Oscillation (BAO) scale. The relative velocity effect is sourced by the different evolution of baryon and cold dark matter perturbations before decoupling. Our power spectrum model includes all $1$-loop redshift-space terms corresponding to $v_{rm bc}$ parameterised by the bias parameter $b_{v^2}$. We also include the linear terms proportional to the relative density, $delta_{rm bc}$, and relative velocity dispersion, $theta_{rm bc}$, which we parameterise with the bias parameters $b^{rm bc}_{delta}$ and $b^{rm bc}_{theta}$. Our data does not support a detection of the relative velocity effect in any of these parameters. Combining the low and high redshift bins of BOSS, we find limits of $b_{v^2} = 0.012 pm 0.015;(pm 0.031)$, $b^{rm bc}_{delta} = -1.0 pm 2.5;(pm 6.2)$ and $b^{rm bc}_{theta} = -114 pm 55;(pm 175)$ with $68%$ ($95%$) confidence levels. These constraints restrict the potential systematic shift in $D_A(z)$, $H(z)$ and $fsigma_8$, due to the relative velocity, to $1%$, $0.8%$ and $2%$, respectively. Given the current uncertainties on the BAO measurements of BOSS these shifts correspond to $0.53sigma$, $0.5sigma$ and $0.22sigma$ for $D_A(z)$, $H(z)$ and $fsigma_8$, respectively.
Measurements of the baryonic acoustic oscillation (BAO) peak in the redshift-space correlation function yield the angular diameter distance D_A(z) and the Hubble parameter H(z) as a function of redshift, constraining the properties of dark energy and space curvature. We discuss the perturbations introduced in the galaxy correlation function by gravitational lensing through the effect of magnification bias and its cross-correlation with the galaxy density. At the BAO scale, gravitational lensing adds a small and slowly varying component to the galaxy correlation function and does not change its shape significantly, through which the BAO peak is measured. The relative shift in the position of the BAO peak caused by gravitational lensing in the angle-averaged correlation function is 10^-4 at z=1, rising to 10^-3 at z=2.5. Lensing effects are stronger near the line-of-sight, however the relative peak shift increases only to 10^-3.3 and 10^-2.4 at z=1 and z=2.5, when the galaxy correlation is averaged within 5 degrees of the line-of-sight (containing only 0.4% of the galaxy pairs in a survey). Furthermore, the lensing contribution can be measured separately and subtracted from the observed correlation at the BAO scale.
The relative velocity between baryons and dark matter in the early Universe can suppress the formation of small-scale baryonic structure and leave an imprint on the baryon acoustic oscillation (BAO) scale at low redshifts after reionization. This streaming velocity affects the post-reionization gas distribution by directly reducing the abundance of pre-existing mini-halos ($lesssim 10^7 M_{bigodot}$) that could be destroyed by reionization and indirectly modulating reionization history via photoionization within these mini-halos. In this work, we investigate the effect of streaming velocity on the BAO feature in HI 21 cm intensity mapping after reionization, with a focus on redshifts $3.5lesssim zlesssim5.5$. We build a spatially modulated halo model that includes the dependence of the filtering mass on the local reionization redshift and thermal history of the intergalactic gas. In our fiducial model, we find isotropic streaming velocity bias coefficients $b_v$ ranging from $-0.0033$ at $z=3.5$ to $-0.0248$ at $z=5.5$, which indicates that the BAO scale is stretched (i.e., the peaks shift to lower $k$). In particular, streaming velocity shifts the transverse BAO scale between 0.087% ($z=3.5$) and 0.37% ($z=5.5$) and shifts the radial BAO scale between 0.13% ($z=3.5$) and 0.52% ($z=5.5$). These shifts exceed the projected error bars from the more ambitious proposed hemispherical-scale surveys in HI (0.13% at $1sigma$ per $Delta z = 0.5$ bin).
In the context of the study of the Integrated Sachs Wolfe effect (ISW), we construct a template of the projected density distribution up to $zsimeq 0.7$ by using the Luminous Galaxies (LGs) from the Sloan Digital Sky Survey DR8. We use a photo-z catalogue trained with more than a hundred thousand galaxies from BOSS in the SDSS DR8 imaging area. We consider two different LG samples whose selection matches that of SDSS-III/BOSS: the LOWZ sample ($zin [0.15,0.5]$) and the CMASS sample ($zin[0.4,0.7]$). When building the LG density maps we use the information from star density, survey footprint, seeing conditions, sky emission, dust extinction and airmass to explore the impact of these artifacts on the two LG samples. In agreement with previous studies, we find that the CMASS sample is particularly sensitive to Galactic stars, which dominate the contribution to the auto-angular power spectrum below $ell=7$. Other potential systematics affect mostly the low multipole range ($ellin[2,7]$), but leave fluctuations on smaller scales practically unchanged. The resulting power spectra in the multipole range $ellin[2,100]$ for the LOWZ, CMASS and LOWZ+CMASS samples are compatible with linear $Lambda$CDM expectations and constant bias values of $b=1.98 pm 0.11$, $2.08pm0.14$ and $1.88pm 0.11$, respectively, with no traces of non-Gaussianity: $f_{rm NL}^{rm local}=59pm 75$ at 95% confidence level for the full LOWZ+CMASS sample in the range $ellin[4,100]$. After cross-correlating WMAP-9yr data with the LOWZ+CMASS LG density field, the ISW signal is detected at the level of 1.62--1.69$,sigma$. While this result is in close agreement with predictions from Monte Carlo simulations in the concordance $Lambda$CDM model, it cannot rule out by itself an Einstein-de Sitter scenario, and has a moderately low signal compared to previous studies conducted on subsets of this LG sample.
We derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) and Type Ia supernova (SN) data. We take advantage of high-precision BAO measurements from galaxy clustering and the Ly-alpha forest (LyaF) in the BOSS survey of SDSS-III. BAO data alone yield a high confidence detection of dark energy, and in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Combining BAO and SN data into an inverse distance ladder yields a 1.7% measurement of $H_0=67.3 pm1.1$ km/s/Mpc. This measurement assumes standard pre-recombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat LCDM cosmology is an important corroboration of this minimal cosmological model. For open LCDM, our BAO+SN+CMB combination yields $Omega_m=0.301 pm 0.008$ and curvature $Omega_k=-0.003 pm 0.003$. When we allow more general forms of evolving dark energy, the BAO+SN+CMB parameter constraints remain consistent with flat LCDM. While the overall $chi^2$ of model fits is satisfactory, the LyaF BAO measurements are in moderate (2-2.5 sigma) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshifts remain consistent with our constraints. Expansion history alone yields an upper limit of 0.56 eV on the summed mass of neutrino species, improving to 0.26 eV if we include Planck CMB lensing. Standard dark energy models constrained by our data predict a level of matter clustering that is high compared to most, but not all, observational estimates. (Abridged)