Do you want to publish a course? Click here

Constraining the relative velocity effect using the Baryon Oscillation Spectroscopic Survey

86   0   0.0 ( 0 )
 Added by Florian Beutler
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyse the power spectrum of the Baryon Oscillation Spectroscopic Survey (BOSS), Data Release 12 (DR12) to constrain the relative velocity effect, which represents a potential systematic for measurements of the Baryon Acoustic Oscillation (BAO) scale. The relative velocity effect is sourced by the different evolution of baryon and cold dark matter perturbations before decoupling. Our power spectrum model includes all $1$-loop redshift-space terms corresponding to $v_{rm bc}$ parameterised by the bias parameter $b_{v^2}$. We also include the linear terms proportional to the relative density, $delta_{rm bc}$, and relative velocity dispersion, $theta_{rm bc}$, which we parameterise with the bias parameters $b^{rm bc}_{delta}$ and $b^{rm bc}_{theta}$. Our data does not support a detection of the relative velocity effect in any of these parameters. Combining the low and high redshift bins of BOSS, we find limits of $b_{v^2} = 0.012 pm 0.015;(pm 0.031)$, $b^{rm bc}_{delta} = -1.0 pm 2.5;(pm 6.2)$ and $b^{rm bc}_{theta} = -114 pm 55;(pm 175)$ with $68%$ ($95%$) confidence levels. These constraints restrict the potential systematic shift in $D_A(z)$, $H(z)$ and $fsigma_8$, due to the relative velocity, to $1%$, $0.8%$ and $2%$, respectively. Given the current uncertainties on the BAO measurements of BOSS these shifts correspond to $0.53sigma$, $0.5sigma$ and $0.22sigma$ for $D_A(z)$, $H(z)$ and $fsigma_8$, respectively.

rate research

Read More

The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7. Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000 quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Lyman alpha forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance D_A to an accuracy of 1.0% at redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyman alpha forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.
223 - Jaiyul Yoo 2011
We investigate the effect of supersonic relative velocities between baryons and dark matter, recently shown to arise generically at high redshift, on baryonic acoustic oscillation (BAO) measurements at low redshift. The amplitude of the relative velocity effect at low redshift is model-dependent, but can be parameterized by using an unknown bias. We find that if unaccounted, the relative velocity effect can shift the BAO peak position and bias estimates of the dark energy equation-of-state due to its non-smooth, out-of-phase oscillation structure around the BAO scale. Fortunately, the relative velocity effect can be easily modeled in constraining cosmological parameters without substantially inflating the error budget. We also demonstrate that the presence of the relative velocity effect gives rise to a unique signature in the galaxy bispectrum, which can be utilized to isolate this effect. Future dark energy surveys can accurately measure the relative velocity effect and subtract it from the power spectrum analysis to constrain dark energy models with high precision.
We present a science forecast for the eBOSS survey, part of the SDSS-IV project, which is a spectroscopic survey using multiple tracers of large-scale structure, including luminous red galaxies (LRGs), emission line galaxies (ELGs) and quasars (both as a direct probe of structure and through the Ly-$alpha$ forest). Focusing on discrete tracers, we forecast the expected accuracy of the baryonic acoustic oscillation (BAO), the redshift-space distortion (RSD) measurements, the $f_{rm NL}$ parameter quantifying the primordial non-Gaussianity, the dark energy and modified gravity parameters. We also use the line-of-sight clustering in the Ly-$alpha$ forest to constrain the total neutrino mass. We find that eBOSS LRGs ($0.6<z<1.0$) (combined with the BOSS LRGs at $z>0.6$), ELGs ($0.6<z<1.2$) and Clustering Quasars (CQs) ($0.6<z<2.2$) can achieve a precision of 1%, 2.2% and 1.6% precisions, respectively, for spherically averaged BAO distance measurements. Using the same samples, the constraint on $fsigma_8$ is expected to be 2.5%, 3.3% and 2.8% respectively. For primordial non-Gaussianity, eBOSS alone can reach an accuracy of $sigma(f_{rm NL})sim10-15$, depending on the external measurement of the galaxy bias and our ability to model large-scale systematic errors. eBOSS can at most improve the dark energy Figure of Merit (FoM) by a factor of $3$ for the Chevallier-Polarski-Linder (CPL) parametrisation, and can well constrain three eigenmodes for the general equation-of-state parameter (Abridged).
96 - Adam D. Myers 2015
As part of the Sloan Digital Sky Survey IV the extended Baryon Oscillation Spectroscopic Survey (eBOSS) will improve measurements of the cosmological distance scale by applying the Baryon Acoustic Oscillation (BAO) method to quasar samples. eBOSS will adopt two approaches to target quasars over 7500 sq. deg. First, a CORE quasar sample will combine optical selection in ugriz using a likelihood-based routine called XDQSOz, with a mid-IR-optical color-cut. eBOSS CORE selection (to g < 22 OR r < 22) should return ~ 70 quasars per sq. deg. at redshifts 0.9 < z < 2.2 and ~7 z > 2.1 quasars per sq. deg. Second, a selection based on variability in multi-epoch imaging from the Palomar Transient Factory should recover an additional ~3-4 z > 2.1 quasars per sq. deg. to g < 22.5. A linear model of how imaging systematics affect target density recovers the angular distribution of eBOSS CORE quasars over 96.7% (76.7%) of the SDSS North (South) Galactic Cap area. The eBOSS CORE quasar sample should thus be sufficiently dense and homogeneous over 0.9 < z < 2.2 to yield the first few-percent-level BAO constraint near z~1.5. eBOSS quasars at z > 2.1 will be used to improve BAO measurements in the Lyman-alpha Forest. Beyond its key cosmological goals, eBOSS should be the next-generation quasar survey, comprising > 500,000 new quasars and > 500,000 uniformly selected spectroscopically confirmed 0.9 < z < 2.2 quasars. At the conclusion of eBOSS, the SDSS will have provided unique spectra of over 800,000 quasars.
The Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. Observations will be simultaneous with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. eBOSS will use four different tracers to measure the distance-redshift relation with baryon acoustic oscillations (BAO). Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z=0.72, we project that eBOSS will yield measurements of $d_A(z)$ to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z>0.6 sample of BOSS galaxies. With ~195,000 new emission line galaxy redshifts, we expect BAO measurements of $d_A(z)$ to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z= 0.87. A sample of more than 500,000 spectroscopically-confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9<z<2.2, with expected precision of 2.8% and 4.2% on $d_A(z)$ and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 quasars known from BOSS, we will obtain new Lyman-alpha forest measurements at redshifts z>2.1; these new data will enhance the precision of $d_A(z)$ and H(z) by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non-Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Here, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا