We predict a dynamic metallization effect where an ultrafast (single-cycle) optical pulse with a field less or on the order of 1 V/Angstrom causes plasmonic metal-like behavior of a dielectric film with a few-nm thickness. This manifests itself in plasmonic oscillations of polarization and a significant population of the conduction band evolving on a femtosecond time scale. These phenomena are due a combination of both adiabatic (reversible) and diabatic (for practical purposes irreversible) pathways.
We introduce an effect of metallization of dielectric nanofilms by strong, adiabatically varying electric fields. The metallization causes optical properties of a dielectric film to become similar to those of a plasmonic metal (strong absorption and negative permittivity at low optical frequencies). The is a quantum effect, which is exponentially size-dependent, occurring at fields on the order of 0.1 V/A and pulse durations ranging from ~ 1 fs to ~ 10 ns for film thickness 3 to 10 nm.
We introduce an effect of metallization of dielectric nanofilms by strong, adiabatically varying electric fields. The metallization causes optical properties of a dielectric film to become similar to those of a plasmonic metal (strong absorption and negative permittivity at low optical frequencies). The is a quantum effect, which is exponentially size-dependent, occurring at fields on the order of 0.1 V/A and pulse durations ranging from ~ 1 fs to ~ 10 ns for film thickness 3 to 10 nm.
Phase-locked ultrashort pulses in the rich terahertz (THz) spectral range have provided key insights into phenomena as diverse as quantum confinement, first-order phase transitions, high-temperature superconductivity, and carrier transport in nanomaterials. Ultrabroadband electro-optic sampling of few-cycle field transients can even reveal novel dynamics that occur faster than a single oscillation cycle of light. However, conventional THz spectroscopy is intrinsically restricted to ensemble measurements by the diffraction limit. As a result, it measures dielectric functions averaged over the size, structure, orientation and density of nanoparticles, nanocrystals or nanodomains. Here, we extend ultrabroadband time-resolved THz spectroscopy (20 - 50 THz) to the sub-nanoparticle scale (10 nm) by combining sub-cycle, field-resolved detection (10 fs) with scattering-type near-field scanning optical microscopy (s-NSOM). We trace the time-dependent dielectric function at the surface of a single photoexcited InAs nanowire in all three spatial dimensions and reveal the ultrafast ($<$50 fs) formation of a local carrier depletion layer.
Here we study a simple way of controlling the emitted fields of sub-wavelength nanometric sources. The system consists of arrays of nanoparticles (NPs) embedded in optical active media. The key concept is the careful tuning of NPs damping factors, which changes the eigenmodes decay rates of the whole array. This, at long time, leads to a locking of relative phases and frequencies of individual localized-surfaces-plasmons (LSPs) and, thus, controlls the emitted field. The amplitude of the LSPs oscillations can be kept constant by embedding the system in optical active media. In the case of full loss compensation, this implies that, not only the relative phases, but also the amplitudes of the LSPs remain fixed, leading us, additionally, to interpret the process as a new example of synchronization. The proposed approach can be used as a general way of controlling and designing the electromagnetic fields emitted by nanometric sources, which can find applications in optoelectronic, nanoscale lithography and probing microscopy.
The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conversion in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the system. However, in strong contrast with plasmon nanoparticles, due to the peculiar distribution of the internal fields in resonant dielectric spheres, the magneto-optical response is fully governed by the magnetic (dipolar and quadrupolar) resonances with little effect of the electric ones.