Do you want to publish a course? Click here

Ultrafast single-nanowire multi-terahertz spectroscopy with sub-cycle temporal resolution

261   0   0.0 ( 0 )
 Added by Markus A. Huber
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Phase-locked ultrashort pulses in the rich terahertz (THz) spectral range have provided key insights into phenomena as diverse as quantum confinement, first-order phase transitions, high-temperature superconductivity, and carrier transport in nanomaterials. Ultrabroadband electro-optic sampling of few-cycle field transients can even reveal novel dynamics that occur faster than a single oscillation cycle of light. However, conventional THz spectroscopy is intrinsically restricted to ensemble measurements by the diffraction limit. As a result, it measures dielectric functions averaged over the size, structure, orientation and density of nanoparticles, nanocrystals or nanodomains. Here, we extend ultrabroadband time-resolved THz spectroscopy (20 - 50 THz) to the sub-nanoparticle scale (10 nm) by combining sub-cycle, field-resolved detection (10 fs) with scattering-type near-field scanning optical microscopy (s-NSOM). We trace the time-dependent dielectric function at the surface of a single photoexcited InAs nanowire in all three spatial dimensions and reveal the ultrafast ($<$50 fs) formation of a local carrier depletion layer.



rate research

Read More

We use the terahertz (THz) emission spectroscopy to study femtosecond photocurrent dynamics in the prototypical 2D semiconductor, transition metal dichalcogenide MoSe$_2$. We identify several distinct mechanisms producing THz radiation in response to an ultrashort ($30,$fs) optical excitation in a bilayer (BL) and a multilayer (ML) sample. In the ML, the THz radiation is generated at a picosecond timescale by out-of-plane currents due to the drift of photoexcited charge carriers in the surface electric field. The BL emission is generated by an in-plane shift current. Finally, we observe oscillations at about $23,$THz in the emission from the BL sample. We attribute the oscillations to quantum beats between two excitonic states with energetic separation of $sim100,$meV.
Ultrafast charge transport in strongly biased semiconductors is at the heart of highspeed electronics, electro-optics, and fundamental solid-state physics. Intense light pulses in the terahertz (THz) spectral range have opened fascinating vistas: Since THz photon energies are far below typical electronic interband resonances, a stable electromagnetic waveform may serve as a precisely adjustable bias. Novel quantum phenomena have been anticipated for THz amplitudes reaching atomic field strengths. We exploit controlled THz waveforms with peak fields of 72 MV/cm to drive coherent interband polarization combined with dynamical Bloch oscillations in semiconducting gallium selenide. These dynamics entail the emission of phase-stable high-harmonic transients, covering the entire THz-to-visible spectral domain between 0.1 and 675 THz. Quantum interference of different ionization paths of accelerated charge carriers is controlled via the waveform of the driving field and explained by a quantum theory of inter- and intraband dynamics. Our results pave the way towards all-coherent THz-rate electronics.
We predict a dynamic metallization effect where an ultrafast (single-cycle) optical pulse with a field less or on the order of 1 V/Angstrom causes plasmonic metal-like behavior of a dielectric film with a few-nm thickness. This manifests itself in plasmonic oscillations of polarization and a significant population of the conduction band evolving on a femtosecond time scale. These phenomena are due a combination of both adiabatic (reversible) and diabatic (for practical purposes irreversible) pathways.
A scanning tunneling microscope is used to generate the electroluminescence of phthalocyanine molecules deposited on NaCl/Ag(111). Photon spectra reveal an intense emission line at 1.9 eV that corresponds to the fluorescence of the molecules, and a series of weaker red-shifted lines. Based on a comparison with Raman spectra acquired on macroscopic molecular crystals, these spectroscopic features can be associated to the vibrational modes of the molecules and provide a detailed chemical fingerprint of the probed species. Maps of the vibronic features reveal sub- molecularly-resolved structures whose patterns are related to the symmetry of the probed vibrational modes.
Improving the temporal resolution of single photon detectors has an impact on many applications, such as increased data rates and transmission distances for both classical and quantum optical communication systems, higher spatial resolution in laser ranging and observation of shorter-lived fluorophores in biomedical imaging. In recent years, superconducting nanowire single-photon detectors (SNSPDs) have emerged as the highest efficiency time-resolving single-photon counting detectors available in the near infrared. As the detection mechanism in SNSPDs occurs on picosecond time scales, SNSPDs have been demonstrated with exquisite temporal resolution below 15 ps. We reduce this value to 2.7$pm$0.2 ps at 400 nm and 4.6$pm$0.2 ps at 1550 nm, using a specialized niobium nitride (NbN) SNSPD. The observed photon-energy dependence of the temporal resolution and detection latency suggests that intrinsic effects make a significant contribution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا