Do you want to publish a course? Click here

Amplitude expansion of the binary phase field crystal model

121   0   0.0 ( 0 )
 Added by Ken Elder
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Amplitude representations of a binary phase field crystal model are developed for a two dimensional triangular lattice and three dimensional BCC and FCC crystal structures. The relationship between these amplitude equations and the standard phase field models for binary alloy solidification with elasticity are derived, providing an explicit connection between phase field crystal and phase field models. Sample simulations of solute migration at grain boundaries, eutectic solidification and quantum dot formation on nano-membranes are also presented.



rate research

Read More

We address a three-dimensional, coarse-grained description of dislocation networks at grain boundaries between rotated crystals. The so-called amplitude expansion of the phase-field crystal model is exploited with the aid of finite element method calculations. This approach allows for the description of microscopic features, such as dislocations, while simultaneously being able to describe length scales that are orders of magnitude larger than the lattice spacing. Moreover, it allows for the direct description of extended defects by means of a scalar order parameter. The versatility of this framework is shown by considering both fcc and bcc lattice symmetries and different rotation axes. First, the specific case of planar, twist grain boundaries is illustrated. The details of the method are reported and the consistency of the results with literature is discussed. Then, the dislocation networks forming at the interface between a spherical, rotated crystal embedded in an unrotated crystalline structure, are shown. Although explicitly accounting for dislocations which lead to an anisotropic shrinkage of the rotated grain, the extension of the spherical grain boundary is found to decrease linearly over time in agreement with the classical theory of grain growth and recent atomistic investigations. It is shown that the results obtained for a system with bcc symmetry agree very well with existing results, validating the methodology. Furthermore, fully original results are shown for fcc lattice symmetry, revealing the generality of the reported observations.
The study of polycrystalline materials requires theoretical and computational techniques enabling multiscale investigations. The amplitude expansion of the phase field crystal model (APFC) allows for describing crystal lattice properties on diffusive timescales by focusing on continuous fields varying on length scales larger than the atomic spacing. Thus, it allows for the simulation of large systems still retaining details of the crystal lattice. Fostered by the applications of this approach, we present here an efficient numerical framework to solve its equations. In particular, we consider a real space approach exploiting the finite element method. An optimized preconditioner is developed in order to improve the convergence of the linear solver. Moreover, a mesh adaptivity criterion based on the local rotation of the polycrystal is used. This results in an unprecedented capability of simulating large, three-dimensional systems including the dynamical description of the microstructures in polycrystalline materials together with their dislocation networks.
During phase transitions certain properties of a material change, such as composition field and lattice-symmetry distortions. These changes are typically coupled, and affect the microstructures that form in materials. Here, we propose a 2D theoretical framework that couples a Cahn-Hilliard (CH) model describing the composition field of a material system, with a phase field crystal (PFC) model describing its underlying microscopic configurations. We couple the two continuum models via coordinate transformation coefficients. We introduce the transformation coefficients in the PFC method, to describe affine lattice deformations. These transformation coefficients are modeled as functions of the composition field. Using this coupled approach, we explore the effects of coarse-grained lattice symmetry and distortions on a phase transition process. In this paper, we demonstrate the working of the CH-PFC model through three representative examples: First, we describe base cases with hexagonal and square lattice symmetries for two composition fields. Next, we illustrate how the CH-PFC method interpolates lattice symmetry across a diffuse composition phase boundary. Finally, we compute a Cahn-Hilliard type of diffusion and model the accompanying changes to lattice symmetry during a phase transition process.
The phase-field crystal model in its amplitude equation approximation is shown to provide an accurate description of the deformation field in defected crystalline structures, as well as of dislocation motion. We analyze in detail the elastic distortion and stress regularization at a dislocation core and show how the Burgers vector density can be directly computed from the topological singularities of the phase-field amplitudes. Distortions arising from these amplitudes are then supplemented with non-singular displacements to enforce mechanical equilibrium. This allows for the consistent separation of plastic and elastic time scales in this framework. A finite element method is introduced to solve the combined amplitude and elasticity equations, which is applied to a few prototypical configurations in two spatial dimensions for a crystal of triangular lattice symmetry: i) the stress field induced by an edge dislocation with an analysis of how the amplitude equation regularizes stresses near the dislocation core, ii) the motion of a dislocation dipole as a result of its internal interaction, and iii) the shrinkage of a rotated grain. We also compare our results with those given by other extensions of classical elasticity theory, such as strain-gradient elasticity and methods based on the smoothing of Burgers vector densities near defect cores.
Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations. Dislocation number fluctuations exhibit a power-law spectral density $1/f^2$ at high frequencies $f$. The probability distribution of number fluctuations becomes bimodal at low driving rates corresponding to a scenario where low density of defects alternate at irregular times with high population of defects. We propose a simple stochastic model of dislocation reaction kinetics that is able to capture these statistical properties of the dislocation density fluctuations as a function of shear rate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا