Do you want to publish a course? Click here

An efficient numerical framework for the amplitude expansion of the phase-field crystal model

122   0   0.0 ( 0 )
 Added by Marco Salvalaglio
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The study of polycrystalline materials requires theoretical and computational techniques enabling multiscale investigations. The amplitude expansion of the phase field crystal model (APFC) allows for describing crystal lattice properties on diffusive timescales by focusing on continuous fields varying on length scales larger than the atomic spacing. Thus, it allows for the simulation of large systems still retaining details of the crystal lattice. Fostered by the applications of this approach, we present here an efficient numerical framework to solve its equations. In particular, we consider a real space approach exploiting the finite element method. An optimized preconditioner is developed in order to improve the convergence of the linear solver. Moreover, a mesh adaptivity criterion based on the local rotation of the polycrystal is used. This results in an unprecedented capability of simulating large, three-dimensional systems including the dynamical description of the microstructures in polycrystalline materials together with their dislocation networks.



rate research

Read More

Amplitude representations of a binary phase field crystal model are developed for a two dimensional triangular lattice and three dimensional BCC and FCC crystal structures. The relationship between these amplitude equations and the standard phase field models for binary alloy solidification with elasticity are derived, providing an explicit connection between phase field crystal and phase field models. Sample simulations of solute migration at grain boundaries, eutectic solidification and quantum dot formation on nano-membranes are also presented.
This work develops a new open source API and software package called textit{SymPhas} for simulations of phase-field, phase-field crystal and reaction-diffusion models, supporting up to three dimensions and an arbitrary number of fields. textit{SymPhas} delivers two novel program capabilities: 1) User specification of models from the associated dynamical equations in an unconstrained form and 2) extensive support for integrating user-developed discrete-grid-based numerical solvers into the API. The capability to specify general phase-field models is primarily achieved by developing a novel symbolic algebra functionality that can formulate mathematical expressions at compile time, is able to apply rules of symbolic algebra such as distribution, factoring and automatic simplification, and support user-driven expression tree manipulation. A modular design based on the CC++ template meta-programming paradigm is applied to the symbolic algebra library and general API implementation to minimize application runtime and increase the accessibility of the API for third party development. textit{SymPhas} is written in C/CC++ and emphasizes high-performance capabilities via parallelization with OpenMP and the CC++ standard library. textit{SymPhas} is equipped with a forward Euler solver and a semi-implicit Fourier spectral solver. Sample implementations and simulations of several phase-field models are presented, generated using the semi-implicit Fourier spectral solver.
139 - Ruotai Li , Qiang Du , Lei Zhang 2020
Phase field methods have been widely used to study phase transitions and polarization switching in ferroelectric thin films. In this paper, we develop an efficient numerical scheme for the variational phase field model based on variational forms of the electrostatic energy and the relaxation dynamics of the polarization vector. The spatial discretization combines the Fourier spectral method with the finite difference method to handle three-dimensional mixed boundary conditions. It allows for an efficient semi-implicit discretization for the time integration of the relaxation dynamics. This method avoids explicitly solving the electrostatic equilibrium equation (a Poisson equation) and eliminates the use of associated Lagrange multipliers. We present several numerical examples including phase transitions and polarization switching processes to demonstrate the effectiveness of the proposed method.
Accurate phase diagram calculation from molecular dynamics requires systematic treatment and convergence of statistical averages. In this work we propose a Gaussian process regression based framework for reconstructing the free energy functions using data of various origin. Our framework allows for propagating statistical uncertainty from finite molecular dynamics trajectories to the phase diagram and automatically performing convergence with respect to simulation parameters. Furthermore, our approach provides a way for automatic optimal sampling in the simulation parameter space based on Bayesian optimization approach. We validate our methodology by constructing phase diagrams of two model systems, the Lennard-Jones and soft-core potential, and compare the results with existing works studies and our coexistence simulations. Finally, we construct the phase diagram of lithium at temperatures above 300 K and pressures below 30 GPa from a machine-learning potential trained on ab initio data. Our approach performs well when compared to coexistence simulations and experimental results.
We address a three-dimensional, coarse-grained description of dislocation networks at grain boundaries between rotated crystals. The so-called amplitude expansion of the phase-field crystal model is exploited with the aid of finite element method calculations. This approach allows for the description of microscopic features, such as dislocations, while simultaneously being able to describe length scales that are orders of magnitude larger than the lattice spacing. Moreover, it allows for the direct description of extended defects by means of a scalar order parameter. The versatility of this framework is shown by considering both fcc and bcc lattice symmetries and different rotation axes. First, the specific case of planar, twist grain boundaries is illustrated. The details of the method are reported and the consistency of the results with literature is discussed. Then, the dislocation networks forming at the interface between a spherical, rotated crystal embedded in an unrotated crystalline structure, are shown. Although explicitly accounting for dislocations which lead to an anisotropic shrinkage of the rotated grain, the extension of the spherical grain boundary is found to decrease linearly over time in agreement with the classical theory of grain growth and recent atomistic investigations. It is shown that the results obtained for a system with bcc symmetry agree very well with existing results, validating the methodology. Furthermore, fully original results are shown for fcc lattice symmetry, revealing the generality of the reported observations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا