Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations. Dislocation number fluctuations exhibit a power-law spectral density $1/f^2$ at high frequencies $f$. The probability distribution of number fluctuations becomes bimodal at low driving rates corresponding to a scenario where low density of defects alternate at irregular times with high population of defects. We propose a simple stochastic model of dislocation reaction kinetics that is able to capture these statistical properties of the dislocation density fluctuations as a function of shear rate.
The critical dynamics of dislocation avalanches in plastic flow is examined using a phase field crystal (PFC) model. In the model, dislocations are naturally created, without any textit{ad hoc} creation rules, by applying a shearing force to the perfectly periodic ground state. These dislocations diffuse, interact and annihilate with one another, forming avalanche events. By data collapsing the event energy probability density function for different shearing rates, a connection to interface depinning dynamics is confirmed. The relevant critical exponents agree with mean field theory predictions.
The active phase-field-crystal (active PFC) model provides a simple microscopic mean field description of crystallization in active systems. It combines the PFC model (or conserved Swift-Hohenberg equation) of colloidal crystallization and aspects of the Toner-Tu theory for self-propelled particles. We employ the active PFC model to study the occurrence of localized and periodic active crystals in two spatial dimensions. Due to the activity, crystalline states can undergo a drift instability and start to travel while keeping their spatial structure. Based on linear stability analyses, time simulations and numerical continuation of the fully nonlinear states, we present a detailed analysis of the bifurcation structure of resting and traveling states. We explore, for instance, how the slanted homoclinic snaking of steady localized states found for the passive PFC model is modified by activity. The analysis is carried out for the model in two spatial dimensions. Morphological phase diagrams showing the regions of existence of various solution types are presented merging the results from all the analysis tools employed. We also study how activity influences the crystal structure with transitions from hexagons to rhombic and stripe patterns. This in-depth analysis of a simple PFC model for active crystals and swarm formation provides a clear general understanding of the observed multistability and associated hysteresis effects, and identifies thresholds for qualitative changes in behavior.
The phase-field crystal model in its amplitude equation approximation is shown to provide an accurate description of the deformation field in defected crystalline structures, as well as of dislocation motion. We analyze in detail the elastic distortion and stress regularization at a dislocation core and show how the Burgers vector density can be directly computed from the topological singularities of the phase-field amplitudes. Distortions arising from these amplitudes are then supplemented with non-singular displacements to enforce mechanical equilibrium. This allows for the consistent separation of plastic and elastic time scales in this framework. A finite element method is introduced to solve the combined amplitude and elasticity equations, which is applied to a few prototypical configurations in two spatial dimensions for a crystal of triangular lattice symmetry: i) the stress field induced by an edge dislocation with an analysis of how the amplitude equation regularizes stresses near the dislocation core, ii) the motion of a dislocation dipole as a result of its internal interaction, and iii) the shrinkage of a rotated grain. We also compare our results with those given by other extensions of classical elasticity theory, such as strain-gradient elasticity and methods based on the smoothing of Burgers vector densities near defect cores.
In this paper the relationship between the density functional theory of freezing and phase field modeling is examined. More specifically a connection is made between the correlation functions that enter density functional theory and the free energy functionals used in phase field crystal modeling and standard models of binary alloys (i.e., regular solution model). To demonstrate the properties of the phase field crystal formalism a simple model of binary alloy crystallization is derived and shown to simultaneously model solidification, phase segregation, grain growth, elastic and plastic deformations in anisotropic systems with multiple crystal orientations on diffusive time scales.
Despite decades of extensive research on mechanical properties of diamond, much remains to be understood in term of plastic deformation mechanisms due to the poor deformability at room temperature. In a recent work in Advanced Materials, it was claimed that room-temperature plasticity occurred in <001>-oriented single-crystal diamond nanopillars based on observation of unrecovered deformation inside scanning electron microscope. The plastic deformation was suggested to be mediated by a phase transition from sp3 carbon to an O8-carbon phase by molecular dynamics simulations. By comparison, our in-situ transmission electron microscopy study reveals that the room-temperature plasticity can be carried out by dislocation slip in both <100> and <111>-oriented diamond nanopillars. The brittle-to-ductile transition is highly dependent on the stress state. We note that the surface structure may play a significant role in the deformation mechanisms as the incipient plasticity always occurs from the surface region in nanoscale diamonds.
Jens M. Tarp
,Luiza Angheluta
,Joachim Mathiesen
.
(2014)
.
"Intermittent dislocation density fluctuations in crystal plasticity from a phase-field crystal model"
.
Nigel Goldenfeld
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا