The optimal discrimination of non-orthogonal quantum states with minimum error probability is a fundamental task in quantum measurement theory as well as an important primitive in optical communication. In this work, we propose and experimentally realize a new and simple quantum measurement strategy capable of discriminating two coherent states with smaller error probabilities than can be obtained using the standard measurement devices; the Kennedy receiver and the homodyne receiver.
Coherent states of the quantum electromagnetic field, the quantum description of ideal laser light, are a prime candidate as information carriers for optical communications. A large body of literature exists on quantum-limited parameter estimation and discrimination for coherent states. However, very little is known about practical realizations of receivers for unambiguous state discrimination (USD) of coherent states. Here we fill this gap and establish a theory of unambiguous discrimination of coherent states, with receivers that are allowed to employ: passive multimode linear optics, phase-space displacements, un-excited auxiliary input modes, and on-off photon detection. Our results indicate that these currently-available optical components are near optimal for unambiguous discrimination of multiple coherent states in a constellation.
Retrieving classical information encoded in optical modes is at the heart of many quantum information processing tasks, especially in the field of quantum communication and sensing. Yet, despite its importance, the fundamental limits of optical mode discrimination have been studied only in few specific examples. Here we present a toolbox to find the optimal discrimination of any set of optical modes. The toolbox uses linear and semi-definite programming techniques, which provide rigorous (not heuristic) bounds, and which can be efficiently solved on standard computers. We study both probabilistic and unambiguous single-shot discrimination in two scenarios: the channel-discrimination scenario, typical of metrology, in which the verifier holds the light source and can set up a reference frame for the phase; and the source-discrimination scenario, more frequent in cryptography, in which the verifier only sees states that are diagonal in the photon-number basis. Our techniques are illustrated with several examples. Among the results, we find that, for many sets of modes, the optimal state for mode discrimination is a superposition or mixture of at most two number states; but this is not general, and we also exhibit counter-examples.
The discrimination of coherent states is a key task in optical communication and quantum key distribution protocols. In this work, we use a photon-number-resolving detector, the transition-edge sensor, to discriminate binary-phase-shifted coherent states at a telecom wavelength. Owing to its dynamic range and high efficiency, we achieve a bit error probability that unconditionally exceeds the standard quantum limit (SQL) by up to 7.7 dB. The improvement to the SQL persists for signals containing up to approximately seven photons on average and is achieved in a single shot (i.e. without measurement feedback), thus making our approach compatible with larger bandwidths.
We propose and experimentally demonstrate non-destructive and noiseless removal (filtering) of vacuum states from an arbitrary set of coherent states of continuous variable systems. Errors i.e. vacuum states in the quantum information are diagnosed through a weak measurement, and on that basis, probabilistically filtered out. We consider three different filters based on on/off detection phase stabilized and phase randomized homodyne detection. We find that on/off etection, optimal in the ideal theoretical setting, is superior to the homodyne strategy in a practical setting.
We demonstrate a sequence of two quantum teleportations of optical coherent states, combining two high-fidelity teleporters for continuous variables. In our experiment, the individual teleportation fidelities are evaluated as F_1 = 0.70 pm 0.02 and F_2 = 0.75 pm 0.02, while the fidelity between the input and the sequentially teleported states is determined as F^{(2)} = 0.57 pm 0.02. This still exceeds the optimal fidelity of one half for classical teleportation of arbitrary coherent states and almost attains the value of the first (unsequential) quantum teleportation experiment with optical coherent states.