No Arabic abstract
We demonstrate a sequence of two quantum teleportations of optical coherent states, combining two high-fidelity teleporters for continuous variables. In our experiment, the individual teleportation fidelities are evaluated as F_1 = 0.70 pm 0.02 and F_2 = 0.75 pm 0.02, while the fidelity between the input and the sequentially teleported states is determined as F^{(2)} = 0.57 pm 0.02. This still exceeds the optimal fidelity of one half for classical teleportation of arbitrary coherent states and almost attains the value of the first (unsequential) quantum teleportation experiment with optical coherent states.
We introduce a quantum teleportation scheme that can transfer a macroscopic spin coherent state between two locations. In the scheme a large number of copies of a qubit, such as realized in a coherent two-component Bose-Einstein condensate, is teleported onto a distant macroscopic spin coherent state using only elementary operations and measurements. We analyze the error of the protocol with the number of particles N in the spin coherent state under decoherence and find that it scales favorably with N.
We propose and experimentally demonstrate non-destructive and noiseless removal (filtering) of vacuum states from an arbitrary set of coherent states of continuous variable systems. Errors i.e. vacuum states in the quantum information are diagnosed through a weak measurement, and on that basis, probabilistically filtered out. We consider three different filters based on on/off detection phase stabilized and phase randomized homodyne detection. We find that on/off etection, optimal in the ideal theoretical setting, is superior to the homodyne strategy in a practical setting.
Protocols for probabilistic entanglement-assisted quantum teleportation and for entanglement swapping of material qubits are presented. They are based on a protocol for postselective Bell-state projection which is capable of projecting two material qubits onto a Bell state with the help of ancillary coherent multiphoton states and postselection by balanced homodyne photodetection. Provided this photonic postselection is successful we explore the theoretical possibilities of realizing unit fidelity quantum teleportation and entanglement swapping with $25%$ success probability. This photon-assisted Bell projection is generated by coupling almost resonantly the two material qubits to single modes of the radiation field in two separate cavities in a Ramsey-type interaction sequence and by measuring the emerged field states in a balanced homodyne detection scenario. As these quantum protocols require basic tools of quantum state engineering of coherent multiphoton states and balanced homodyne photodetection they may offer interesting perspectives in particular for current quantum optical applications in quantum information processing.
We employ the quantum state of a single photon entangled with the vacuum (|1,0>-|0,1>), generated by a photon incident upon a symmetric beam splitter, to teleport single-mode quantum states of light by means of the Bennett protocol. Teleportation of coherent states results in truncation of their Fock expansion to the first two terms. We analyze the teleported ensembles by means of homodyne tomography and obtain fidelities of up to 99 per cent for low source state amplitudes. This work is an experimental realization of the quantum scissors device proposed by Pegg, Phillips and Barnett (Phys. Rev. Lett. 81, 1604 (1998))
Quantum state teleportation of optical number states is conspicuously absent from the list of experimental milestones achieved to date. Here we demonstrate analytically a teleportation scheme with fidelity $100%$ for optical number states of arbitrary dimension using linear optical elements only. To this end, we develop an EPR source to supply Bell-type states for the teleportation, and show how the same set-up can also be used as a Bell-state analyser (BSA) when implemented in a time-reversal manner. These two aspects are then brought together to complete the teleportation protocol in a scheme that can deliver perfect fidelity, albeit with an efficiency that decays exponentially as the occupation of the number states increases stepwise. The EPR source and BSA schemes both consist of two optical axes in a symmetrical V-shape experimental layout, along which beam-splitters are placed cross-beam fashion at regular intervals, with their transmittivities treated as variables for which the values are calculated ad hoc. In particular, we show the full treatment for the case of qutrit teleportation, and calculate the transmittivity values of the beam splitters required for teleporting qubits, qutrits, qupentits, quheptits and qunits. The general case for arbitrary-dimensional number state teleportation is demonstrated through a counting argument.