Do you want to publish a course? Click here

Lecture Notes on Semiconductor Spintronics

149   0   0.0 ( 0 )
 Added by Tomasz Dietl
 Publication date 2007
  fields Physics
and research's language is English
 Authors Tomasz Dietl




Ask ChatGPT about the research

These informal lecture notes describe the progress in semiconductor spintronics in a historic perspective as well as in a comparison to achievements of spintronics of ferromagnetic metals. After outlining motivations behind spintronic research, selected results of investigations on three groups of materials are presented. These include non-magnetic semiconductors, hybrid structures involving semiconductors and ferromagnetic metals, and diluted magnetic semiconductors either in paramagnetic or ferromagnetic phase. Particular attention is paid to the hole-controlled ferromagnetic systems whose thermodynamic, micromagnetic, transport, and optical properties are described in detail together with relevant theoretical models.



rate research

Read More

Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin or magnetism. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin injection, Silsbee-Johnson spin-charge coupling, and spindependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent nteraction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief reviews of relevant recent achievements in the field.
90 - Davide Grossi 2021
These lecture notes have been developed for the course Computational Social Choice of the Artificial Intelligence MSc programme at the University of Groningen. They cover mathematical and algorithmic aspects of voting theory.
195 - Peter Selinger 2013
This is a set of lecture notes that developed out of courses on the lambda calculus that I taught at the University of Ottawa in 2001 and at Dalhousie University in 2007 and 2013. Topics covered in these notes include the untyped lambda calculus, the Church-Rosser theorem, combinatory algebras, the simply-typed lambda calculus, the Curry-Howard isomorphism, weak and strong normalization, polymorphism, type inference, denotational semantics, complete partial orders, and the language PCF.
162 - Ronald de Wolf 2019
This is a set of lecture notes suitable for a Masters course on quantum computation and information from the perspective of theoretical computer science. The first version was written in 2011, with many extensions and improvements in subsequent years. The first 10 chapters cover the circuit model and the main quantum algorithms (Deutsch-Jozsa, Simon, Shor, Hidden Subgroup Problem, Grover, quantum walks, Hamiltonian simulation and HHL). They are followed by 3 chapters about complexity, 4 chapters about distributed (Alice and Bob) settings, and a final chapter about quantum error correction. Appendices A and B give a brief introduction to the required linear algebra and some other mathematical and computer science background. All chapters come with exercises, with some hints provided in Appendix C.
91 - M. Kachelriess 2008
I give a concise introduction into high energy cosmic ray physics, including also few related aspects of high energy gamma-ray and neutrino astrophysics. The main emphasis is placed on astrophysical questions, and the level of the presentation is kept basic.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا