No Arabic abstract
This is a set of lecture notes suitable for a Masters course on quantum computation and information from the perspective of theoretical computer science. The first version was written in 2011, with many extensions and improvements in subsequent years. The first 10 chapters cover the circuit model and the main quantum algorithms (Deutsch-Jozsa, Simon, Shor, Hidden Subgroup Problem, Grover, quantum walks, Hamiltonian simulation and HHL). They are followed by 3 chapters about complexity, 4 chapters about distributed (Alice and Bob) settings, and a final chapter about quantum error correction. Appendices A and B give a brief introduction to the required linear algebra and some other mathematical and computer science background. All chapters come with exercises, with some hints provided in Appendix C.
This is a self-contained set of lecture notes covering various aspects of the theory of open quantum system, at a level appropriate for a one-semester graduate course. The main emphasis is on completely positive maps and master equations, both Markovian and non-Markovian.
These third-year lecture notes are designed for a 1-semester course in topological quantum field theory (TQFT). Assumed background in mathematics and physics are only standard second-year subjects: multivariable calculus, introduction to quantum mechanics and basic electromagnetism. Keywords: quantum mechanics/field theory, path integral, Hodge decomposition, Chern-Simons and Yang-Mills gauge theories, conformal field theory
These lecture notes provide a basic introduction to the framework of generalized probabilistic theories (GPTs) and a sketch of a reconstruction of quantum theory (QT) from simple operational principles. To build some intuition for how physics could be even more general than quantum, I present two conceivable phenomena beyond QT: superstrong nonlocality and higher-order interference. Then I introduce the framework of GPTs, generalizing both quantum and classical probability theory. Finally, I summarize a reconstruction of QT from the principles of Tomographic Locality, Continuous Reversibility, and the Subspace Axiom. In particular, I show why a quantum bit is described by a Bloch ball, why it is three-dimensional, and how one obtains the complex numbers and operators of the usual representation of QT.
Let $A in mathbb{Z}^{m times n}$ be an integral matrix and $a$, $b$, $c in mathbb{Z}$ satisfy $a geq b geq c geq 0$. The question is to recognize whether $A$ is ${a,b,c}$-modular, i.e., whether the set of $n times n$ subdeterminants of $A$ in absolute value is ${a,b,c}$. We will succeed in solving this problem in polynomial time unless $A$ possesses a duplicative relation, that is, $A$ has nonzero $n times n$ subdeterminants $k_1$ and $k_2$ satisfying $2 cdot |k_1| = |k_2|$. This is an extension of the well-known recognition algorithm for totally unimodular matrices. As a consequence of our analysis, we present a polynomial time algorithm to solve integer programs in standard form over ${a,b,c}$-modular constraint matrices for any constants $a$, $b$ and $c$.
This text is an introduction to an operational outlook on Bell inequalities, which has been very fruitful in the past few years. It has lead to the recognition that Bell tests have their own place in applied quantum technologies, because they quantify non-classicality in a device-independent way, that is, without any need to describe the degrees of freedom under study and the measurements that are performed. At the more fundamental level, the same device-independent outlook has allowed the falsification of several other alternative models that could hope to reproduce the observed statistics while keeping some classical features that quantum theory denies; and it has shed new light on the long-standing quest for deriving quantum theory from physical principles.