No Arabic abstract
Gamma-ray burst afterglow observations in the Swift era have a perceived lack of achromatic jet breaks compared to the BeppoSAX, or pre-Swift era. Specifically, relatively few breaks, consistent with jet breaks, are observed in the X-ray light curves of these bursts. If these breaks are truly missing, it has serious consequences for the interpretation of GRB jet collimation and energy requirements, and the use of GRBs as cosmological tools. Here we address the issue of X-ray breaks that are possibly `hidden and hence the light curves are misinterpreted as being single power laws. We do so by synthesising XRT light curves and fitting both single and broken power laws, and comparing the relative goodness of each fit via Monte Carlo analysis. Even with the well sampled light curves of the Swift era, these breaks may be left misidentified, hence caution is required when making definite statements on the absence of achromatic breaks.
Gamma-Ray Burst (GRB) afterglow observations in the Swift era have a perceived lack of achromatic jet breaks compared to the BeppoSAX, or pre-Swift era. Specifically, relatively few breaks, consistent with jet breaks, are observed in the X-ray light curves of these bursts. If these breaks are truly missing, it has serious consequences for the interpretation of GRB jet collimation and energy requirements, and the use of GRBs as standard candles. Here we address the issue of X-ray breaks which are possibly hidden and hence the light curves are misinterpreted as being single power-laws. We show how a number of precedents, including GRB 990510 & GRB 060206, exist for such hidden breaks and how, even with the well sampled light curves of the Swift era, these breaks may be left misidentified. We do so by synthesising X-ray light curves and finding general trends via Monte Carlo analysis. Furthermore, in light of these simulations, we discuss how to best identify achromatic breaks in afterglow light curves via multi-wavelength analysis.
In the redshift range z = 0-1, the gamma ray burst (GRB) redshift distribution should increase rapidly because of increasing differential volume sizes and strong evolution in the star formation rate. This feature is not observed in the Swift redshift distribution and to account for this discrepancy, a dominant bias, independent of the Swift sensitivity, is required. Furthermore, despite rapid localization, about 40-50% of Swift and pre-Swift GRBs do not have a measured redshift. We employ a heuristic technique to extract this redshift bias using 66 GRBs localized by Swift with redshifts determined from absorption or emission spectroscopy. For the Swift and HETE+BeppoSAX redshift distributions, the best model fit to the bias in z < 1 implies that if GRB rate evolution follows the SFR, the bias cancels this rate increase. We find that the same bias is affecting both Swift and HETE+BeppoSAX measurements similarly in z < 1. Using a bias model constrained at a 98% KS probability, we find that 72% of GRBs in z < 2 will not have measurable redshifts and about 55% in z > 2. To achieve this high KS probability requires increasing the GRB rate density in small z compared to the high-z rate. This provides further evidence for a low-luminosity population of GRBs that are observed in only a small volume because of their faintness.
Gamma-ray Burst (GRB) collimation has been inferred with the observations of achromatic steepening in GRB light curves, known as jet breaks. Identifying a jet break from a GRB afterglow lightcurve allows a measurement of the jet opening angle and true energetics of GRBs. In this paper, we reinvestigate this problem using a large sample of GRBs that have an optical jet break which is consistent with being achromatic in the X-ray band. Our sample includes 99 GRBs from February 1997 to March 2015 that have optical and, for Swift GRBs, X-ray lightcurves that are consistent with the jet break interpretation. Out of 99 GRBs we have studied, 55 GRBs are found to have temporal and spectral behaviors both before and after the break consistent with the theoretical predictions of the jet break models, respectively. These include 53 long/soft (Type II) and 2 short/hard (Type I) GRBs. Only 1 GRB is classified as the candidate of a jet break with energy injection. Another 41 and 3 GRBs are classified as the candidates with the lower and upper limits of the jet break time, respectively. The typical beaming correction factor $f_b^{-1} sim 1000$ for Type II GRBs, suggesting an even higher total GRB event rate density in the universe. Both isotropic and jet-corrected energies have a wide span in their distributions. We also investigate several empirical correlations (Amati, Frail, Ghirlanda and Liang-Zhang) previously discussed in the literature. We find that in general most of these relations are less tight than before. The existence of early jet breaks and hence small opening angle jets, which were detected in the {em Swfit era}, is most likely the source of scatter. If one limits the sample to jet breaks later than $10^4$ s, the Liang-Zhang relation remains tight and the Ghirlanda relation still exists. These relations are derived from Type II GRBs, and Type I GRBs usually deviate from them.
We investigate the clustering of afterglow light curves observed at X-ray and optical wavelengths. We have constructed a sample of 61 bursts with known dis tance and X-ray afterglow. This sample includes bursts observed by BeppoSAX, XMM-Newton, Chandra, and SWIFT. We correct the light curves for cosmological ef fects and compare the observed X-ray fluxes one day after the burst. We check for correlations between the observed flux and the burst spectral and temporal properties. We confirm the previous result of Boer and Gendre (2000) that X-ray afterglow light curves cluster in luminosity, even when we consider the l ast SWIFT data. We observe this clustering only for the afterglow light curves; the inclusion of prompt-related data broaden the distribution. A similar clu stering is observed for the optical light curves; GRB sources can be divided in three classes, namely optical and X-ray bright afterglows, optical and X-ray dim ones, and optically bright -X-ray dim ones. We argue that this clustering is related to the fireball total energy, the external medium density, the fraction of fireball energy going in relativistic electrons and magnetic fields. These parameters can be either fixed to a standard va lue, or correlated. We finally propose a method for the estimation of the GRB source redshift based on the observed X-ray flux one day after the burst and optical properties. Using this method, we compute a redshift of 1.4 +/- 0.2 for GRB 980519 and of 1.9 +/- 0.3 for GRB 040827. We tested this method on three recently detected SWIFT GRBs with known redshift, and found it in good agreement with the reported distance from optical spectroscopy .
We present the Hubble diagram (HD) of 66 Gamma Ray Bursts (GRBs) derived using only data from their X - ray afterglow lightcurve. To this end, we use the recently updated L_X - T_a correlation between the break time T_a and the X - ray luminosity L_X measured at T_a calibrated from a sample of Swift GRBs with lightcurves well fitted by the Willingale et al. (2007) model. We then investigate the use of this HD to constrain cosmological parameters when used alone or in combination with other data showing that the use of GRBs leads to constraints in agreement with previous results in literature. We finally argue that a larger sample of high luminosity GRBs can provide a valuable information in the search for the correct cosmological model.