Do you want to publish a course? Click here

The hidden X-ray breaks in afterglow light curves

113   0   0.0 ( 0 )
 Added by Peter Curran
 Publication date 2008
  fields Physics
and research's language is English
 Authors P.A. Curran




Ask ChatGPT about the research

Gamma-Ray Burst (GRB) afterglow observations in the Swift era have a perceived lack of achromatic jet breaks compared to the BeppoSAX, or pre-Swift era. Specifically, relatively few breaks, consistent with jet breaks, are observed in the X-ray light curves of these bursts. If these breaks are truly missing, it has serious consequences for the interpretation of GRB jet collimation and energy requirements, and the use of GRBs as standard candles. Here we address the issue of X-ray breaks which are possibly hidden and hence the light curves are misinterpreted as being single power-laws. We show how a number of precedents, including GRB 990510 & GRB 060206, exist for such hidden breaks and how, even with the well sampled light curves of the Swift era, these breaks may be left misidentified. We do so by synthesising X-ray light curves and finding general trends via Monte Carlo analysis. Furthermore, in light of these simulations, we discuss how to best identify achromatic breaks in afterglow light curves via multi-wavelength analysis.



rate research

Read More

88 - P.A. Curran 2008
Gamma-ray burst afterglow observations in the Swift era have a perceived lack of achromatic jet breaks compared to the BeppoSAX, or pre-Swift era. Specifically, relatively few breaks, consistent with jet breaks, are observed in the X-ray light curves of these bursts. If these breaks are truly missing, it has serious consequences for the interpretation of GRB jet collimation and energy requirements, and the use of GRBs as cosmological tools. Here we address the issue of X-ray breaks that are possibly `hidden and hence the light curves are misinterpreted as being single power laws. We do so by synthesising XRT light curves and fitting both single and broken power laws, and comparing the relative goodness of each fit via Monte Carlo analysis. Even with the well sampled light curves of the Swift era, these breaks may be left misidentified, hence caution is required when making definite statements on the absence of achromatic breaks.
100 - B. Gendre 2008
We investigate the clustering of afterglow light curves observed at X-ray and optical wavelengths. We have constructed a sample of 61 bursts with known dis tance and X-ray afterglow. This sample includes bursts observed by BeppoSAX, XMM-Newton, Chandra, and SWIFT. We correct the light curves for cosmological ef fects and compare the observed X-ray fluxes one day after the burst. We check for correlations between the observed flux and the burst spectral and temporal properties. We confirm the previous result of Boer and Gendre (2000) that X-ray afterglow light curves cluster in luminosity, even when we consider the l ast SWIFT data. We observe this clustering only for the afterglow light curves; the inclusion of prompt-related data broaden the distribution. A similar clu stering is observed for the optical light curves; GRB sources can be divided in three classes, namely optical and X-ray bright afterglows, optical and X-ray dim ones, and optically bright -X-ray dim ones. We argue that this clustering is related to the fireball total energy, the external medium density, the fraction of fireball energy going in relativistic electrons and magnetic fields. These parameters can be either fixed to a standard va lue, or correlated. We finally propose a method for the estimation of the GRB source redshift based on the observed X-ray flux one day after the burst and optical properties. Using this method, we compute a redshift of 1.4 +/- 0.2 for GRB 980519 and of 1.9 +/- 0.3 for GRB 040827. We tested this method on three recently detected SWIFT GRBs with known redshift, and found it in good agreement with the reported distance from optical spectroscopy .
The peaks of 30 optical afterglows and 14 X-ray light-curves display a good anticorrelation of the peak flux with the peak epoch: F_p ~ t_p^{-2.0} in the optical, F_p ~ t_p^{-1.6} in the X-ray, the distributions of the peak epochs being consistent with each other. We investigate the ability of two forward-shock models for afterglow light-curve peaks -- an observer location outside the initial jet aperture and the onset of the forward-shock deceleration -- to account for those peak correlations. For both models, the slope of the F_p - t_p relation depends only on the slope of the afterglow spectrum. We find that only a conical jet seen off-aperture and interacting with a wind-like medium can account for both the X-ray peak relation, given the average X-ray spectral slope beta_x = 1.0, and for the larger slope of the optical peak relation. However, any conclusion about the origin of the peak flux - peak epoch correlation is, at best, tentative, because the current sample of X-ray peaks is too small to allow a reliable measurement of the F_p - t_p relation slope and because more than one mechanism and/or one afterglow parameter may be driving that correlation.
110 - O. Bardho , M. Boer , B. Gendre 2015
During the pre-Swift era, a clustering of light curves was observed in the X-ray, optical and infrared afterglow of gamma-ray bursts. We used a sample of 254 GRB X-ray afterglows to check this fact in the Swift era. We corrected fluxes for distance, time dilation and losses of energy due to cosmological effects. With all our data in hand, we faced with a problem: our data were scattered. We investigated 3 possibilities to explain this, namely: the clustering does not exist, there are problems during calibration of data, and there are instrumental problems. We finally confirm that our sample is consistent with Dainotti correlation.
We present a comprehensive statistical analysis of Swift X-ray light-curves of Gamma-Ray Bursts (GRBs), with more than 650 GRBs. Two questions drive this effort: (1) Does the X-ray emission retain any kind of memory of the prompt phase? (2) Where is the dividing line between long and short GRBs? We show that short GRBs decay faster, are less luminous and less energetic than long GRBs, but are interestingly characterized by very similar intrinsic absorption. Our analysis reveal the existence of a number of relations that link the X-ray to prompt parameters in long GRBs; short GRBs are outliers of the majority of these 2-parameter relations. Here we concentrate on a 3-parameter (E_pk-Egamma,iso-E_X,iso) scaling that is shared by the GRB class as a whole (short GRBs, long GRBs and X-ray Flashes -XRFs): interpreted in terms of emission efficiency, this scaling may imply that GRBs with high $E_{rm{pk}}$ are more efficient during their prompt emission.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا