Do you want to publish a course? Click here

Cracking Coding Interview: 150 Programming interview questions and solutions

تغلب على مقابلات التوظيف البرمجية: ١٥٠ سؤال برمجي من مقابلات مع شركات برمجية عالمية مع الشرح

1262   1   2   0.0 ( 0 )
 Added by CareerCup كتاب
 Publication date 2014
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

150 programming interview questions and solutions Plus: • Five proven approaches to solving tough algorithm questions • Ten mistakes candidates make -- and how to avoid them • Steps to prepare for behavioral and technical questions • Interviewer war stories: a view from the interviewer’s side


Artificial intelligence review:
Research summary
يقدم كتاب 'Cracking the Coding Interview' للكاتبة غايل لاكمان 150 سؤالًا وحلولًا لمقابلات البرمجة، بالإضافة إلى استراتيجيات مجربة لحل الأسئلة الصعبة المتعلقة بالخوارزميات. يتناول الكتاب أيضًا الأخطاء الشائعة التي يرتكبها المرشحون وكيفية تجنبها، ويقدم نصائح للتحضير للأسئلة السلوكية والتقنية. يتضمن الكتاب قصصًا من واقع المقابلات من وجهة نظر المحاورين، ويغطي مقابلات العمل في شركات كبرى مثل مايكروسوفت، أمازون، جوجل، آبل، وياهو. يتميز الكتاب بتقديمه نصائح عملية لكتابة السيرة الذاتية والاستعداد للمقابلات التقنية والسلوكية، بالإضافة إلى تقديمه أسئلة شائعة حول المقابلات وكيفية التعامل معها. كما يحتوي الكتاب على فصول متخصصة في هياكل البيانات والخوارزميات وتصميم الأنظمة والبرمجة الشيئية وغيرها من المواضيع التقنية.
Critical review
دراسة نقدية: يقدم الكتاب ثروة من المعلومات والنصائح القيمة للمرشحين لمقابلات العمل في مجال البرمجة، وهو مفيد بشكل خاص لمن يسعون للعمل في شركات تقنية كبرى. ومع ذلك، يمكن أن يكون الكتاب مرهقًا بعض الشيء بسبب كثرة المعلومات والتفاصيل التقنية. قد يجد بعض القراء صعوبة في متابعة جميع الفصول والمعلومات المقدمة، خاصة إذا كانوا مبتدئين في هذا المجال. بالإضافة إلى ذلك، قد يكون التركيز على الشركات الكبرى غير مناسب لبعض القراء الذين يسعون للعمل في شركات أصغر أو في مجالات أخرى. بشكل عام، الكتاب مفيد جدًا ولكنه يتطلب التزامًا وجهدًا كبيرين للاستفادة الكاملة منه.
Questions related to the research
  1. ما هي الأخطاء الشائعة التي يرتكبها المرشحون في مقابلات البرمجة؟

    الكتاب يذكر عشرة أخطاء شائعة يرتكبها المرشحون، مثل عدم التحضير الكافي، وعدم القدرة على التفكير بصوت عالٍ، والتركيز على حفظ الحلول بدلاً من فهمها، وعدم معرفة السيرة الذاتية بشكل جيد، وغيرها من الأخطاء التي يمكن تجنبها من خلال التحضير الجيد والتدريب المستمر.

  2. كيف يمكن للمرشحين التحضير للأسئلة السلوكية في المقابلات؟

    ينصح الكتاب بإنشاء شبكة تحضيرية تحتوي على مشاريعك وتجاربك السابقة، وتحديد القصص التي تعكس التحديات التي واجهتها وكيف تعاملت معها، وما تعلمته من تلك التجارب. كما ينصح الكتاب بالتدرب على الإجابة على الأسئلة السلوكية باستخدام نموذج 'S.A.R.' (الموقف، العمل، النتيجة).

  3. ما هي الاستراتيجيات المجربة لحل الأسئلة الصعبة المتعلقة بالخوارزميات؟

    الكتاب يقدم خمس استراتيجيات مجربة لحل الأسئلة الصعبة المتعلقة بالخوارزميات، وهي: فهم المشكلة بشكل جيد، تقسيم المشكلة إلى أجزاء أصغر، البحث عن أنماط وحلول مشابهة، التفكير بصوت عالٍ، والاختبار والتحسين المستمر للحلول المقترحة.

  4. ما هي النصائح التي يقدمها الكتاب لكتابة سيرة ذاتية قوية؟

    ينصح الكتاب بتركيز السيرة الذاتية على إظهار الذكاء والقدرة على البرمجة، وتجنب إضافة معلومات غير ذات صلة مثل الهوايات الشخصية. كما ينصح بكتابة الإنجازات بشكل واضح ومحدد، وذكر النتائج التي تم تحقيقها باستخدام الأرقام والنسب المئوية إذا أمكن. كما يجب التأكد من خلو السيرة الذاتية من الأخطاء اللغوية والنحوية.


References used
No references
rate research

Read More

Given the diversity of the candidates and complexity of job requirements, and since interviewing is an inherently subjective process, it is an important task to ensure consistent, uniform, efficient and objective interviews that result in high qualit y recruitment. We propose an interview assistant system to automatically, and in an objective manner, select an optimal set of technical questions (from question banks) personalized for a candidate. This set can help a human interviewer to plan for an upcoming interview of that candidate. We formalize the problem of selecting a set of questions as an integer linear programming problem and use standard solvers to get a solution. We use knowledge graph as background knowledge in this formulation, and derive our objective functions and constraints from it. We use candidate's resume to personalize the selection of questions. We propose an intrinsic evaluation to compare a set of suggested questions with actually asked questions. We also use expert interviewers to comparatively evaluate our approach with a set of reasonable baselines.
This paper introduces MediaSum, a large-scale media interview dataset consisting of 463.6K transcripts with abstractive summaries. To create this dataset, we collect interview transcripts from NPR and CNN and employ the overview and topic description s as summaries. Compared with existing public corpora for dialogue summarization, our dataset is an order of magnitude larger and contains complex multi-party conversations from multiple domains. We conduct statistical analysis to demonstrate the unique positional bias exhibited in the transcripts of televised and radioed interviews. We also show that MediaSum can be used in transfer learning to improve a model's performance on other dialogue summarization tasks.
Land subdivision is one of the most important works in cadastral surveying. It includes every process that concerned with making separated cadastral pieces by land subdividing into small parts for several objectives such as selling, preparing for lan d irrigation or land improvements…etc. There are several cases for land subdivision. Land subdivision can be performed using three methods, first: the graphical method, second mathematical method and the last one: the method that depends on the engineering software such as Land Development software.
Modern summarization models generate highly fluent but often factually unreliable outputs. This motivated a surge of metrics attempting to measure the factuality of automatically generated summaries. Due to the lack of common benchmarks, these metric s cannot be compared. Moreover, all these methods treat factuality as a binary concept and fail to provide deeper insights on the kinds of inconsistencies made by different systems. To address these limitations, we devise a typology of factual errors and use it to collect human annotations of generated summaries from state-of-the-art summarization systems for the CNN/DM and XSum datasets. Through these annotations we identify the proportion of different categories of factual errors and benchmark factuality metrics, showing their correlation with human judgement as well as their specific strengths and weaknesses.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا