Do you want to publish a course? Click here

RICA: Evaluating Robust Inference Capabilities Based on Commonsense Axioms

ريكا: تقييم قدرات الاستدلال القوي على أساس البديهيات المنطقية

138   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Pre-trained language models (PTLMs) have achieved impressive performance on commonsense inference benchmarks, but their ability to employ commonsense to make robust inferences, which is crucial for effective communications with humans, is debated. In the pursuit of advancing fluid human-AI communication, we propose a new challenge, RICA: Robust Inference using Commonsense Axioms, that evaluates robust commonsense inference despite textual perturbations. To generate data for this challenge, we develop a systematic and scalable procedure using commonsense knowledge bases and probe PTLMs across two different evaluation settings. Extensive experiments on our generated probe sets with more than 10k statements show that PTLMs perform no better than random guessing on the zero-shot setting, are heavily impacted by statistical biases, and are not robust to perturbation attacks. We also find that fine-tuning on similar statements offer limited gains, as PTLMs still fail to generalize to unseen inferences. Our new large-scale benchmark exposes a significant gap between PTLMs and human-level language understanding and offers a new challenge for PTLMs to demonstrate commonsense.

References used
https://aclanthology.org/
rate research

Read More

Due to large number of entities in biomedical knowledge bases, only a small fraction of entities have corresponding labelled training data. This necessitates entity linking models which are able to link mentions of unseen entities using learned repre sentations of entities. Previous approaches link each mention independently, ignoring the relationships within and across documents between the entity mentions. These relations can be very useful for linking mentions in biomedical text where linking decisions are often difficult due mentions having a generic or a highly specialized form. In this paper, we introduce a model in which linking decisions can be made not merely by linking to a knowledge base entity but also by grouping multiple mentions together via clustering and jointly making linking predictions. In experiments on the largest publicly available biomedical dataset, we improve the best independent prediction for entity linking by 3.0 points of accuracy, and our clustering-based inference model further improves entity linking by 2.3 points.
Recent methods based on pre-trained language models have shown strong supervised performance on commonsense reasoning. However, they rely on expensive data annotation and time-consuming training. Thus, we focus on unsupervised commonsense reasoning. We show the effectiveness of using a common framework, Natural Language Inference (NLI), to solve diverse commonsense reasoning tasks. By leveraging transfer learning from large NLI datasets, and injecting crucial knowledge from commonsense sources such as ATOMIC 2020 and ConceptNet, our method achieved state-of-the-art unsupervised performance on two commonsense reasoning tasks: WinoWhy and CommonsenseQA. Further analysis demonstrated the benefits of multiple categories of knowledge, but problems about quantities and antonyms are still challenging.
This work explores the capacities of character-based Neural Machine Translation to translate noisy User-Generated Content (UGC) with a strong focus on exploring the limits of such approaches to handle productive UGC phenomena, which almost by definit ion, cannot be seen at training time. Within a strict zero-shot scenario, we first study the detrimental impact on translation performance of various user-generated content phenomena on a small annotated dataset we developed and then show that such models are indeed incapable of handling unknown letters, which leads to catastrophic translation failure once such characters are encountered. We further confirm this behavior with a simple, yet insightful, copy task experiment and highlight the importance of reducing the vocabulary size hyper-parameter to increase the robustness of character-based models for machine translation.
This work demonstrates the development process of a machine learning architecture for inference that can scale to a large volume of requests. We used a BERT model that was fine-tuned for emotion analysis, returning a probability distribution of emoti ons given a paragraph. The model was deployed as a gRPC service on Kubernetes. Apache Spark was used to perform inference in batches by calling the service. We encountered some performance and concurrency challenges and created solutions to achieve faster running time. Starting with 200 successful inference requests per minute, we were able to achieve as high as 18 thousand successful requests per minute with the same batch job resource allocation. As a result, we successfully stored emotion probabilities for 95 million paragraphs within 96 hours.
This paper shows that CIDEr-D, a traditional evaluation metric for image description, does not work properly on datasets where the number of words in the sentence is significantly greater than those in the MS COCO Captions dataset. We also show that CIDEr-D has performance hampered by the lack of multiple reference sentences and high variance of sentence length. To bypass this problem, we introduce CIDEr-R, which improves CIDEr-D, making it more flexible in dealing with datasets with high sentence length variance. We demonstrate that CIDEr-R is more accurate and closer to human judgment than CIDEr-D; CIDEr-R is more robust regarding the number of available references. Our results reveal that using Self-Critical Sequence Training to optimize CIDEr-R generates descriptive captions. In contrast, when CIDEr-D is optimized, the generated captions' length tends to be similar to the reference length. However, the models also repeat several times the same word to increase the sentence length.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا