Do you want to publish a course? Click here

Math Word Problem Generation with Mathematical Consistency and Problem Context Constraints

توليد مشكلة كلمة الرياضيات مع الاتساق الرياضي وقيود سياق المشكلات

346   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We study the problem of generating arithmetic math word problems (MWPs) given a math equation that specifies the mathematical computation and a context that specifies the problem scenario. Existing approaches are prone to generating MWPs that are either mathematically invalid or have unsatisfactory language quality. They also either ignore the context or require manual specification of a problem template, which compromises the diversity of the generated MWPs. In this paper, we develop a novel MWP generation approach that leverages i) pre-trained language models and a context keyword selection model to improve the language quality of generated MWPs and ii) an equation consistency constraint for math equations to improve the mathematical validity of the generated MWPs. Extensive quantitative and qualitative experiments on three real-world MWP datasets demonstrate the superior performance of our approach compared to various baselines.



References used
https://aclanthology.org/
rate research

Read More

We propose a structured extension to bidirectional-context conditional language generation, or infilling,'' inspired by Frame Semantic theory. Guidance is provided through one of two approaches: (1) model fine-tuning, conditioning directly on observe d symbolic frames, and (2) a novel extension to disjunctive lexically constrained decoding that leverages frame semantic lexical units. Automatic and human evaluations confirm that frame-guided generation allows for explicit manipulation of intended infill semantics, with minimal loss in distinguishability from human-generated text. Our methods flexibly apply to a variety of use scenarios, and we provide an interactive web demo.
Current neural math solvers learn to incorporate commonsense or domain knowledge by utilizing pre-specified constants or formulas. However, as these constants and formulas are mainly human-specified, the generalizability of the solvers is limited. In this paper, we propose to explicitly retrieve the required knowledge from math problemdatasets. In this way, we can determinedly characterize the required knowledge andimprove the explainability of solvers. Our two algorithms take the problem text andthe solution equations as input. Then, they try to deduce the required commonsense and domain knowledge by integrating information from both parts. We construct two math datasets and show the effectiveness of our algorithms that they can retrieve the required knowledge for problem-solving.
In this article, we tackle the math word problem, namely, automatically answering a mathematical problem according to its textual description. Although recent methods have demonstrated their promising results, most of these methods are based on templ ate-based generation scheme which results in limited generalization capability. To this end, we propose a novel human-like analogical learning method in a recall and learn manner. Our proposed framework is composed of modules of memory, representation, analogy, and reasoning, which are designed to make a new exercise by referring to the exercises learned in the past. Specifically, given a math word problem, the model first retrieves similar questions by a memory module and then encodes the unsolved problem and each retrieved question using a representation module. Moreover, to solve the problem in a way of analogy, an analogy module and a reasoning module with a copy mechanism are proposed to model the interrelationship between the problem and each retrieved question. Extensive experiments on two well-known datasets show the superiority of our proposed algorithm as compared to other state-of-the-art competitors from both overall performance comparison and micro-scope studies.
In this paper and we identify an interesting kind of error in the output of Unsupervised Neural Machine Translation (UNMT) systems like Undreamt1. We refer to this error type as Scrambled Translation problem. We observe that UNMT models which use wor d shuffle noise (as in case of Undreamt) can generate correct words and but fail to stitch them together to form phrases. As a result and words of the translated sentence look scrambled and resulting in decreased BLEU. We hypothesise that the reason behind scrambled translation problem is 'shuffling noise' which is introduced in every input sentence as a denoising strategy. To test our hypothesis and we experiment by retraining UNMT models with a simple retraining strategy. We stop the training of the Denoising UNMT model after a pre-decided number of iterations and resume the training for the remaining iterations- which number is also pre-decided- using original sentence as input without adding any noise. Our proposed solution achieves significant performance improvement UNMT models that train conventionally. We demonstrate these performance gains on four language pairs and viz. and English-French and English-German and English-Spanish and Hindi-Punjabi. Our qualitative and quantitative analysis shows that the retraining strategy helps achieve better alignment as observed by attention heatmap and better phrasal translation and leading to statistically significant improvement in BLEU scores.
Words are defined based on their meanings in various ways in different resources. Aligning word senses across monolingual lexicographic resources increases domain coverage and enables integration and incorporation of data. In this paper, we explore t he application of classification methods using manually-extracted features along with representation learning techniques in the task of word sense alignment and semantic relationship detection. We demonstrate that the performance of classification methods dramatically varies based on the type of semantic relationships due to the nature of the task but outperforms the previous experiments.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا