Do you want to publish a course? Click here

Monolingual Word Sense Alignment as a Classification Problem

محاذاة معنى كلمة أحادية الأحادية كمشكلة التصنيف

329   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Words are defined based on their meanings in various ways in different resources. Aligning word senses across monolingual lexicographic resources increases domain coverage and enables integration and incorporation of data. In this paper, we explore the application of classification methods using manually-extracted features along with representation learning techniques in the task of word sense alignment and semantic relationship detection. We demonstrate that the performance of classification methods dramatically varies based on the type of semantic relationships due to the nature of the task but outperforms the previous experiments.



References used
https://aclanthology.org/
rate research

Read More

Supervised systems have nowadays become the standard recipe for Word Sense Disambiguation (WSD), with Transformer-based language models as their primary ingredient. However, while these systems have certainly attained unprecedented performances, virt ually all of them operate under the constraining assumption that, given a context, each word can be disambiguated individually with no account of the other sense choices. To address this limitation and drop this assumption, we propose CONtinuous SEnse Comprehension (ConSeC), a novel approach to WSD: leveraging a recent re-framing of this task as a text extraction problem, we adapt it to our formulation and introduce a feedback loop strategy that allows the disambiguation of a target word to be conditioned not only on its context but also on the explicit senses assigned to nearby words. We evaluate ConSeC and examine how its components lead it to surpass all its competitors and set a new state of the art on English WSD. We also explore how ConSeC fares in the cross-lingual setting, focusing on 8 languages with various degrees of resource availability, and report significant improvements over prior systems. We release our code at https://github.com/SapienzaNLP/consec.
Authors of text tend to predominantly use a single sense for a lemma that can differ among different authors. This might not be captured with an author-agnostic word sense disambiguation (WSD) model that was trained on multiple authors. Our work find s that WordNet's first senses, the predominant senses of our dataset's genre, and the predominant senses of an author can all be different and therefore, author-agnostic models could perform well over the entire dataset, but poorly on individual authors. In this work, we explore methods for personalizing WSD models by tailoring existing state-of-the-art models toward an individual by exploiting the author's sense distributions. We propose a novel WSD dataset and show that personalizing a WSD system with knowledge of an author's sense distributions or predominant senses can greatly increase its performance.
Being able to generate accurate word alignments is useful for a variety of tasks. While statistical word aligners can work well, especially when parallel training data are plentiful, multilingual embedding models have recently been shown to give good results in unsupervised scenarios. We evaluate an ensemble method for word alignment on four language pairs and demonstrate that by combining multiple tools, taking advantage of their different approaches, substantial gains can be made. This holds for settings ranging from very low-resource to high-resource. Furthermore, we introduce a new gold alignment test set for Icelandic and a new easy-to-use tool for creating manual word alignments.
Supervised approaches usually achieve the best performance in the Word Sense Disambiguation problem. However, the unavailability of large sense annotated corpora for many low-resource languages make these approaches inapplicable for them in practice. In this paper, we mitigate this issue for the Persian language by proposing a fully automatic approach for obtaining Persian SemCor (PerSemCor), as a Persian Bag-of-Word (BoW) sense-annotated corpus. We evaluated PerSemCor both intrinsically and extrinsically and showed that it can be effectively used as training sets for Persian supervised WSD systems. To encourage future research on Persian Word Sense Disambiguation, we release the PerSemCor in http://nlp.sbu.ac.ir.
Text simplification is a growing field with many potential useful applications. Training text simplification algorithms generally requires a lot of annotated data, however there are not many corpora suitable for this task. We propose a new unsupervis ed method for aligning text based on Doc2Vec embeddings and a new alignment algorithm, capable of aligning texts at different levels. Initial evaluation shows promising results for the new approach. We used the newly developed approach to create a new monolingual parallel corpus composed of the works of English early modern philosophers and their corresponding simplified versions.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا